1
|
Khosroshahi ME, Patel Y, Umashanker V. Targeted FT-NIR and SERS Detection of Breast Cancer HER-II Biomarkers in Blood Serum Using PCB-Based Plasmonic Active Nanostructured Thin Film Label-Free Immunosensor Immobilized with Directional GNU-Conjugated Antibody. SENSORS (BASEL, SWITZERLAND) 2024; 24:5378. [PMID: 39205071 PMCID: PMC11358943 DOI: 10.3390/s24165378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via a 1,6-Hexanedithiol (HDT) linkage to produce a plasmonic activated nanostructured thin film (PANTF) platform. A label-free SERS immunosensor was fabricated by conjugating the platform with monoclonal HER-II antibodies (mAb) in a directional orientation via adipic acid dihydrazide (ADH) to provide higher accessibility to overexpressed HER-II biomarkers (i.e., 2+ (early), 3+ (locally advanced), and positive (meta) in BCS. An enhancement factor (EF) of 0.3 × 105 was achieved for PANTF using Rhodamine (R6G), and the morphology was studied by scanning electron microscopy (SEM) and atomic force microscope (AFM). UV-vis spectroscopy showed the peaks at 222, 231, and 213 nm corresponding to ADH, mAb, and HER-II biomarkers, respectively. The functionalization and conjugation were investigated by Fourier Transform Near Infrared (FT-NIR) where the most dominant overlapped spectra of 2+, 3+, and Pos correspond to OH-combination of carbohydrate, RNH2 1st overtone, and aromatic CH 1st overtone of mAb, respectively. SERS data were filtered using the filtfilt filter from scipy.signals, baseline corrected using the Improved Asymmetric Least Squares (isals) function from the pybaselines.Whittaker library. The results showed the common peaks at 867, 1312, 2894, 3026, and 3258 cm-1 corresponding to glycine, alanine ν (C-N-C) assigned to the symmetric C-N-C stretch mode; tryptophan and α helix; C-H antisymmetric and symmetric stretching; NH3+ in amino acids; and N-H stretch primary amide, respectively, with the intensity of Pos > 3+ > 2+. This trend is justifiable considering the stage of each sample. Principal Component Analysis (PCA) and Linear Discrimination Analysis (LDA) were employed for the statistical analysis of data.
Collapse
Affiliation(s)
- Mohammad E. Khosroshahi
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON L4B 1B4, Canada
- Institute for Advanced Non-Destructive and Non-Invasive Diagnostic Technologies (IANDIT), University of Toronto, Toronto, ON M5S 3G8, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Yesha Patel
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON L4B 1B4, Canada
- Department of Biochemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Vithurshan Umashanker
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON L4B 1B4, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Kosikowska-Adamus P, Golda A, Ryl J, Pilarczyk-Zurek M, Bereta G, Ossowski T, Lesner A, Koziel J, Prahl A, Niedziałkowski P. Electrochemical detection of bacterial endotoxin lipopolysaccharide (LPS) on gold electrode modified with DAL-PEG-DK5-PEG-OH - Antimicrobial peptide conjugate. Talanta 2024; 273:125881. [PMID: 38492283 DOI: 10.1016/j.talanta.2024.125881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection. The efficiency of the modification was confirmed by X-ray Photoelectron Spectroscopy (XPS) measurements. Additionally, the cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS) were employed to monitor the effectiveness of each step of the modification. The obtained results confirmed that the presence of the surface-attached covalently bound peptide DAL-PEG-DK5-PEG-OH enables LPS detection by means of CV technique within the range from 5 × 10-13 to 5 × 10-4 g/mL in PBS solution. The established limit of detection (LOD) for EIS measurements was 4.93 × 10-21 g/mL with wide linear detection range from 5 × 10-21 to 5 × 10-14 g/mL in PBS solution. Furthermore, we confirmed the ability of the electrode to detect LPS in a complex biological samples, like mouse urine and human serum. The effectiveness of the electrodes in identifying LPS in both urine and serum matrices was confirmed for samples containing LPS at both 2.5 × 10-15 g/mL and 2.5 × 10-9 g/mL.
Collapse
Affiliation(s)
- Paulina Kosikowska-Adamus
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek Ryl
- Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Grzegorz Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
3
|
Lv E, Wang T, Wang J, Sun R, Zhang C, Yu J, Li Z, Man B, Zhao X, Zhang C. Cascade Bowl Multicavity Structure for In Situ Surface-Enhanced Raman Scattering Detection of Organic Gas Molecules. J Phys Chem Lett 2024; 15:2247-2254. [PMID: 38380862 DOI: 10.1021/acs.jpclett.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.
Collapse
Affiliation(s)
- Enze Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Junkun Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Ruijing Sun
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Chengrui Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Zhen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Xiaofei Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
4
|
Su YY, Jiang XY, Zheng LJ, Yang YW, Yan SY, Tian Y, Tian W, Liu WF, Teng ZG, Yao H, Wang SJ, Zhang LJ. Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. J Colloid Interface Sci 2023; 634:601-609. [PMID: 36549208 DOI: 10.1016/j.jcis.2022.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors. Importantly, the Au-star@PB nanoparticles function as effective MRI/PA contrast agents in vivo by increasing T1-weighted MR/PAI signal intensity and as effective PTT agents in vivo by decreasing the tumor volume in MCF-7 tumor bearing BALB / c mouse model as well as in vitro by lessening tumor cells growth rate. Interestingly, we found the main photothermal effect of Au-star@PB is derived from Au-star, but not PB. In summary, the hybrid structure of Au-star@PB NPs with good biological safety, significant photostability, dual imaging capability, and high therapeutic efficiency, might offer a novel avenue for the future diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Xin Yu Jiang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Li Juan Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yi Wen Yang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Suo Yu Yan
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wen Fei Liu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhao Gang Teng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Hui Yao
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of General Surgery, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China.
| | - Shou Ju Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, PR China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
5
|
Khosroshahi ME, Patel Y. Reflective FT-NIR and SERS studies of HER-II breast cancer biomarker using plasmonic-active nanostructured thin film immobilized oriented antibody. JOURNAL OF BIOPHOTONICS 2023; 16:e202200252. [PMID: 36177970 DOI: 10.1002/jbio.202200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We describe the fabrication of plasmonic-active nanostructured thin film substrate as a label-free surface-enhanced Raman scattering (SERS)-based biosensor immobilized covalently with monoclonal HER-II antibody (mAb) to detect overexpressed HER-II as a biomarker in breast cancer serum (BCS). Oriented conjugation of mAb via hydrazone linkage to provide higher mAb accessibility was characterized by UV-vis and reflective Fourier transform near-infrared (FT-NIR) spectroscopic techniques. The interaction of BCS with mAb was studied by FT-NIR and nonresonant SERS at 637 nm. The results showed detection of glycoprotein content at different laser powers including a rise in amino acid and glycan content with varying results at higher power. With nonresonant SERS we observed nonlinear behavior of peak intensity. Analysis of variance was implemented to determine the effect of laser power which was found not to be a contributing factor. However, at the nanoscale, factors including the heating effect and aggregation of molecules can contribute to the nonlinearity of peak intensity.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, Ontario, Canada
| | - Yesha Patel
- Nanobiophotonics and Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, Ontario, Canada
- Department of Biochemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Khosroshahi ME, Patel Y, Chabok R. Non-invasive optical characterization and detection of CA 15-3 breast cancer biomarker in blood serum using monoclonal antibody-conjugated gold nanourchin and surface-enhanced Raman scattering. Lasers Med Sci 2022; 38:24. [PMID: 36571665 DOI: 10.1007/s10103-022-03675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
A proof-of-concept of colloidal surface-enhanced Raman scattering (SERS) substrate for rapid selective detection of overexpressed CA 15-3 biomarker in breast cancer serum (BCS) is suggested using PEGylated gold nanourchins (GNUs) conjugated with anti-CA 15-3 monoclonal antibody (mAb). UV-vis spectroscopy provided conformational information about mAb where the initial aromatic amino acid peak was red-shifted from 271 to 291 nm. The fluorescence peak of tyrosine in mAb was reduced by ≈ 77%, and red-shifted by ≈ 3 nm after incubation in BCS. Fourier transform near-infrared spectroscopy and SERS were used to study the composition and the molecular structure of the mAb and BCS. Some of the most dominant Raman shifts after GNU-PEG-mAb interaction with BCS are 498, 736, 818, 1397, 1484, 2028, 2271, and 3227 cm-1 mainly corresponding to C-N-C in amines, vibrational modes of amino acids, C-H out-of-plane bend, C-O stretching carboxylic acid, the vibrational mode in phospholipids, NH3+ amine salt, C≡N stretching in nitriles, and O-H stretching. The intensity of SERS signals varied per trial due to the statistical behavior of GNU in BCS, agglomeration, laser power, and the heating effect. Despite very small amount of plasmonic heating, the result of the ANOVA test demonstrated that under our experimental conditions, the heating effect on signal variation is negligible and that the differences in the laser power are insignificant for all SERS observations (p > 0.6); thus, other parameters are responsible. The absorbance of mAb-conjugated GNU was decreased after five minutes of irradiation at 8 mW in the BCS.
Collapse
Affiliation(s)
- Mohammad E Khosroshahi
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada.
- Institute for Advanced Non-Destructive & Diagnostic Technologies (IANDIT), University of Toronto, Toronto, M5S 3G8, Canada.
| | - Yesha Patel
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada
- Department of Biochemistry, Faculty of Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Roxana Chabok
- Nanobiophotonics & Biomedical Research Laboratory, M.I.S. Electronics Inc., Richmond Hill, ON, L4B 1B4, Canada
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
7
|
Lai WF, Obireddy SR, Zhang H, Zhang D, Wong WT. Advances in analysis of pharmaceuticals by using graphene-based sensors. ChemMedChem 2022; 17:e202200111. [PMID: 35618680 DOI: 10.1002/cmdc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective use of drugs relies on proper pharmaceutical analysis. Graphene has been extensively used to construct sensors for this purpose. Over the years, a large variety of pharmaceutical sensors have been developed from graphene or its derivatives. This articles reviews the current status of sensor development from graphene and its derivatives, and discusses the use of graphene-based sensors in pharmaceutical analysis. It is hoped that this article cannot only offer a snapshot of recent advances in the fabrication and use of graphene-based sensors, but can also provide insights into future engineering and optimization of the sensors for effective pharmaceutical analysis.
Collapse
Affiliation(s)
- Wing-Fu Lai
- The Chinese University of Hong Kong, School of Life and Health Sciences, 518172, Shenzhen, CHINA
| | - Sreekanth Reddy Obireddy
- Sri Krishnadevaraya University, Chemistry, TIRUPATI NATIONAL HIGHWAY, ITUKALAPALLI, 515004, India, 515003, ANANTHAPURAMU, INDIA
| | - Haotian Zhang
- The Chinese University of Hong Kong, School of Life and Health Sciences, CHINA
| | | | - Wing-Tak Wong
- The Hong Kong Polytechnic University, Applied Biology and Chemical Technology, CHINA
| |
Collapse
|
8
|
Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. BIOSENSORS 2022; 12:bios12040225. [PMID: 35448285 PMCID: PMC9029226 DOI: 10.3390/bios12040225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
In SERS analysis, the specificity of molecular fingerprints is combined with potential single-molecule sensitivity so that is an attractive tool to detect molecules in trace amounts. Although several substrates have been widely used from early on, there are still some problems such as the difficulties to bind some molecules to the substrate. With the development of nanotechnology, an increasing interest has been focused on plasmonic metal nanoparticles hybridized with (2D) nanomaterials due to their unique properties. More frequently, the excellent properties of the hybrids compounds have been used to improve the drawbacks of the SERS platforms in order to create a system with outstanding properties. In this review, the physics and working principles of SERS will be provided along with the properties of differently shaped metal nanoparticles. After that, an overview on how the hybrid compounds can be engineered to obtain the SERS platform with unique properties will be given.
Collapse
Affiliation(s)
- Caterina Serafinelli
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| | - Alessandro Fantoni
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
| | - Elisabete C. B. A. Alegria
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Manuela Vieira
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
9
|
Photothermal/NO combination therapy from plasmonic hybrid nanotherapeutics against breast cancer. J Control Release 2022; 345:417-432. [PMID: 35331784 DOI: 10.1016/j.jconrel.2022.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
In this study, a plasmon-semiconductor nanotheranostic system comprising Au nanostars/graphene quantum dots (AuS/QD) hybrid nanoparticles loaded with BNN6 and surface modified with PEG-pyrene was developed for the photo-triggered hyperthermia effect and NO production as the dual modality treatment against orthotopic triple-negative breast cancer. The structure and morphology of the hybrid nanodevice was characterized and the NIR-II induced thermal response and NO production was determined. The hybrid nanodevice has shown enhanced plasmonic energy transfer from localized surface plasmonic resonance of Au nanostars to QD semiconductor that activates the BNN6 species loaded on QD surfaces, leading to the effective NO production and the gas therapy in addition to the photothermal response. The increased accumulation of the NIR-II-responsive hybrid nanotheranostic in tumor via the enhanced permeation and retention effects was confirmed by both in vivo fluorescence and photoacoustic imaging. The prominent therapeutic efficacy of the photothermal/NO combination therapy from the BNN6-loaded AuS@QD nanodevice with the NIR-II laser irradiation at 1064 nm against 4T1 breast cancer was observed both in vitro and in vivo. The NO therapy for the cancer treatment was evidenced with the increased cellular nitrosative and oxidative stress, nitration of tyrosine residues of mitochondrial proteins, vessel eradication and cell apoptosis. The efficacy of the photothermal treatment was corroborated directly by severe tissue thermal ablation and tumor growth inhibition. The NIR-II triggered thermal/NO combination therapy along with the photoacoustic imaging-guided therapeutic accumulation in tumor shows prominent effect to fully inhibit tumor growth and validates the promising strategy developed in this study.
Collapse
|
10
|
Xie B, Wang ZP, Zhang R, Zhang Z, He Y. A SERS aptasensor based on porous Au-NC nanoballoons for Staphylococcus aureus detection. Anal Chim Acta 2022; 1190:339175. [PMID: 34857128 DOI: 10.1016/j.aca.2021.339175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
In this work, we developed a new approach for fabricating hollow and porous nitrogen doped carbon nanoballoons loading AuNPs (Au-NC-NBs) with a large specific surface area, a high N and Au content. The surface-enhanced Raman scattering (SERS) aptasensor based on the resulting Au-NC-NBs possess a wider linear range (10 to 107 cells/mL), a lower detection limit (3 cells/mL), better selectivity for detecting bacteria than previously reported sensors. Importantly, Au-NC-NBs SERS aptasensor also exhibits excellent performance for detecting bacteria in the real food and biological samples. This work provides a facile and versatile designing strategy for controlled construction of SERS biosensor by combination of Au nanoparticles and carbon materials, which has a great applied potential in food safety monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China
| | - Zhi-Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Ruixue Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331, Shapingba, Chongqing, PR China.
| |
Collapse
|
11
|
Liu J, Yuan W, Li C, Cheng M, Su Y, Xu L, Chu T, Hou S. l-Cysteine-Modified Graphene Oxide-Based Membrane for Chiral Selective Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49215-49223. [PMID: 34628847 DOI: 10.1021/acsami.1c14900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel chiral separation membrane was fabricated by assembling l-cysteine (l-Cys)-modified graphene oxide sheets. l-Cys modification leads to an enantiomer separation membrane with an accessible interlayer spacing of 8 Å, which allows high solvent permeability. In the racemate separation experiments under isobaric conditions, the enantiomeric excess (ee) values of alanine (Ala), threonine (Thr), tyrosine (Tyr), and penicillamine (Pen) racemates in the permeation solution were 43.60, 44.11, 27.43, and 46.44%, respectively. In the racemate separation experiments under negative pressure, the separation performances of Ala, Thr, and Tyr were still maintained, and the enantiomeric excess (ee) values of the filtrate after separation were 56.80, 54.57, and 32.34%, respectively. These results indicate that the as-prepared GO-Cys membrane has a great practical value in the field of enantiomer separation.
Collapse
Affiliation(s)
- Jinglei Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Wenbo Yuan
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Caifeng Li
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Mengmeng Cheng
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Yan Su
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Lijian Xu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Tianfei Chu
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, PR China
| |
Collapse
|
12
|
Panyathip R, Sucharitakul S, Phaduangdhitidhada S, Ngamjarurojana A, Kumnorkaew P, Choopun S. Surface Enhanced Raman Scattering in Graphene Quantum Dots Grown via Electrochemical Process. Molecules 2021; 26:molecules26185484. [PMID: 34576956 PMCID: PMC8471654 DOI: 10.3390/molecules26185484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Graphene Quantum dots (GQDs) are used as a surface-enhanced Raman substrate for detecting target molecules with large specific surface areas and more accessible edges to enhance the signal of target molecules. The electrochemical process is used to synthesize GQDs in the solution-based process from which the SERS signals were obtained from GQDs Raman spectra. In this work, GQDs were grown via the electrochemical process with citric acid and potassium chloride (KCl) electrolyte solution to obtain GQDs in a colloidal solution-based format. Then, GQDs were characterized by transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy, respectively. From the results, SERS signals had observed via GQDs spectra through the Raman spectra at D (1326 cm-1) and G (1584 cm-1), in which D intensity is defined as the presence of defects on GQDs and G is the sp2 orbital of carbon signal. The increasing concentration of KCl in the electrolyte solution for 0.15M to 0.60M demonstrated the increment of Raman intensity at the D peak of GQDs up to 100 over the D peak of graphite. This result reveals the potential feasibility of GQDs as SERS applications compared to graphite signals.
Collapse
Affiliation(s)
- Rangsan Panyathip
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Sukrit Sucharitakul
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Surachet Phaduangdhitidhada
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Athipong Ngamjarurojana
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Pisist Kumnorkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Supab Choopun
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
- Correspondence: ; Tel.: +66-081-951-2669
| |
Collapse
|
13
|
Tang Y, Kuzume A, Yamamoto K. Structural Effect of Polyvinylpyrrolidone-stabilized Au Nanostars for SERS Application. CHEM LETT 2021. [DOI: 10.1246/cl.200720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuansen Tang
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Akiyoshi Kuzume
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
14
|
Zhang X, Zheng H, Jin S, Jiang Y, Wang Y, Liu Y. Fe3Pt-Ag nanoparticles: A novel generic approach towards detection and reduction for Rhodamine B. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pramanik A, Mayer J, Patibandla S, Gates K, Gao Y, Davis D, Seshadri R, Ray PC. Mixed-Dimensional Heterostructure Material-Based SERS for Trace Level Identification of Breast Cancer-Derived Exosomes. ACS OMEGA 2020; 5:16602-16611. [PMID: 32685826 PMCID: PMC7364584 DOI: 10.1021/acsomega.0c01441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 05/11/2023]
Abstract
Raman spectroscopy has capability for fingerprint molecular identification with high sensitivity if weak Raman scattering signal can be enhanced by several orders of magnitudes. Herein, we report a heterostructure-based surface-enhanced Raman spectroscopy (SERS) platform using 2D graphene oxide (GO) and 0D plasmonic gold nanostar (GNS), with capability of Raman enhancement factor (EF) in the range of ∼1010 via light-matter and matter-matter interactions. The current manuscript reveals huge Raman enhancement for heterostructure materials occurring via both electromagnetic enhancement mechanism though plasmonic GNS nanoparticle (EF ∼107) and chemical enhancement mechanism through 2D-GO material (EF ∼102). Finite-difference time-domain (FDTD) simulation data and experimental investigation indicate that GNS allows light to be concentrated into nanoscale "hotspots" formed on the heterostructure surface, which significantly enhanced Raman efficiency via a plasmon-exciton light coupling process. Notably, we have shown that mixed-dimensional heterostructure-based SERS can be used for tracking of cancer-derived exosomes from triple-negative breast cancer and HER2(+) breast cancer with a limit of detection (LOD) of 3.8 × 102 exosomes/mL for TNBC-derived exosomes and 4.4 × 102 exosomes/mL for HER2(+) breast cancer-derived exosomes.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Justin Mayer
- Materials
Department, University of California, Santa Barbara, California 93106-5121, United States
| | - Shamily Patibandla
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Dalephine Davis
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Ram Seshadri
- Materials
Department, University of California, Santa Barbara, California 93106-5121, United States
| | - Paresh Chandra Ray
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| |
Collapse
|
16
|
Yeshchenko OA, Golovynskyi S, Kudrya VY, Tomchuk AV, Dmitruk IM, Berezovska NI, Teselko PO, Zhou T, Xue B, Golovynska I, Lin D, Qu J. Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging. ACS OMEGA 2020; 5:14030-14039. [PMID: 32566869 PMCID: PMC7301579 DOI: 10.1021/acsomega.0c01433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The label-free detection of biomolecules by means of fluorescence spectroscopy and imaging is topical. The developed surface-enhanced fluorescence technique has been applied to achieve progress in the label-free detection of biomolecules including deoxyribonucleic acid (DNA) bases. In this study, the effect of a strong enhancement of photoluminescence of 5'-deoxyadenosine-monophosphate (dAMP) by the plasmonic nanocavity metasurface composed of the silver femtosecond laser-induced periodic surface structure (LIPSS) and gold nanorods or nanospheres has been realized at room temperature. The highest value of 1220 for dAMP on the Ag-LIPSS/Au nanorod metasurface has been explained to be a result of the synergetic effect of the generation of hot spots near the sharp edges of LIPSS and Au nanorod tips together with the excitation of collective gap mode of the cavity due to strong near-field plasmonic coupling. A stronger plasmonic enhancement of the phosphorescence compared to the fluorescence is achieved due to a greater overlap of the phosphorescence spectrum with the surface plasmon spectral region. The photoluminescence imaging of dAMP on the metasurfaces shows a high intensity in the blue range. The comparison of Ag-LIPSS/Au nanorod and Ag-LIPSS/Au-nanosphere metasurfaces shows a considerably higher enhancement for the metasurface containing Au nanorods. Thus, the hybrid cavity metasurfaces containing metal LIPSS and nonspherical metal nanoparticles with sharp edges are promising for high-sensitive label-free detection and imaging of biomolecules at room temperature.
Collapse
Affiliation(s)
- Oleg A. Yeshchenko
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Sergii Golovynskyi
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| | - Vladislav Yu Kudrya
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Anastasiya V. Tomchuk
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Igor M. Dmitruk
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
- Department
of Photon Processes, Institute of Physics,
NAS of Ukraine, Kyiv 03028, Ukraine
| | | | - Petro O. Teselko
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Ting Zhou
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| | - Bin Xue
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| | - Iuliia Golovynska
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| | - Danying Lin
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Center
for Biomedical Photonics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Hernández S, Islam MS, Thompson S, Kearschner M, Hatakeyama E, Malekzadeh N, Hoelen T, Bhattacharyya D. Thiol-Functionalized Membranes for Mercury Capture from Water. Ind Eng Chem Res 2020; 59:5287-5295. [PMID: 33208988 DOI: 10.1021/acs.iecr.9b03761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pore functionalized membranes with appropriate ion exchange/chelate groups allow toxic metal sorption under convective flow conditions. This study explores the sorption capacity of ionic mercury in a polyvinylidene fluoride-poly(acrylic acid) (PVDFs-PAA) functionalized membrane immobilized with cysteamine (MEA). Two methods of MEA immobilization to the PVDF-PAA membrane have been assessed: (i) ion exchange (IE) and (ii) carbodiimide cross-linker chemistry using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), known as EDC/NHS coupling. The ion exchange method demonstrates that cysteamine (MEA) can be immobilized effectively on PVDF-PAA membranes without covalent attachment. The effectiveness of the MEA immobilized membranes to remove ionic mercury from the water was evaluated by passing a dissolved mercury(II) nitrate solution through the membranes. The sorption capacity of mercury for MEA immobilized membrane prepared by the IE method is 1015 mg/g PAA. On the other hand, the sorption capacity of mercury for MEA immobilized membrane prepared by EDC/NHS chemistry is 2446 mg/g PAA, indicating that membrane functionalization by EDC/NHS coupling enhanced mercury sorption 2.4 times compared to the IE method. The efficiencies of Hg removal are 94.1 ± 1.1 and 99.1 ± 0.1% for the MEA immobilized membranes prepared by IE and EDC/NHS coupling methods, respectively. These results show potential applications of MEA immobilized PVDF-PAA membranes for industrial wastewater treatment specifically from energy and mining industries to remove mercury and other toxic metals.
Collapse
Affiliation(s)
- Sebastián Hernández
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Samuel Thompson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Madison Kearschner
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Evan Hatakeyama
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Nga Malekzadeh
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Thomas Hoelen
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
18
|
Zhang CY, Zhao BC, Hao R, Wang Z, Hao YW, Zhao B, Liu YQ. Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121510. [PMID: 31704120 DOI: 10.1016/j.jhazmat.2019.121510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO)-anisotropic noble metal hybrid systems were developed as highly sensitive and reproducible surface enhanced Raman scattering (SERS) platform, in which ultrathin GO was embedded between two metallic layers of flower-like Ag nanoparticles (AgNFs) and gold nanostars (AuNSts). Due to multi-dimensional plasmonic coupling effect, the well-designed AgNFs-GO-AuNSts sandwich structures possessed ultrahigh sensitivity with the detection limit of R6G as low as 1.0 × 10-13 M and high enhancement factor of 2.59 × 107. Additionally, the GO interlayer could function as protective shell to suppress the oxidation of bottom silver layer and efficiently position the target analytes within hot spots. These features endow the substrate with high stability and excellent reproducibility (Signal variations < 7%). Particularly, the GO sandwiched substrate can be explored for the direct capture and sensitive detection of polychlorinated biphenyls (PCBs) without any organic modifier as molecule harvester. This minimum detected concentration was estimated as low as 3.4 × 10-6 M. The detection method based on GO mediated sandwich substrate avoids complicated surface modification manipulations and improves the substrate cleanness. Moreover, the resultant sandwich substrates can be used to recognize fingerprint peaks of different PCBs in their complex mixture, revealing great potential applications in SERS-based simultaneous detection of multiple pollutants with low affinity.
Collapse
Affiliation(s)
- Cong-Yun Zhang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Bai-Chuan Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Rui Hao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zhi Wang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yao-Wu Hao
- The Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Bin Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Ya-Qing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
19
|
Jabłońska A, Jaworska A, Kasztelan M, Berbeć S, Pałys B. Graphene and Graphene Oxide Applications for SERS Sensing and Imaging. Curr Med Chem 2020; 26:6878-6895. [PMID: 30289065 DOI: 10.2174/0929867325666181004152247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) has a long history as an ultrasensitive platform for the detection of biological species from small aromatic molecules to complex biological systems as circulating tumor cells. Thanks to unique properties of graphene, the range of SERS applications has largely expanded. Graphene is efficient fluorescence quencher improving quality of Raman spectra. It contributes also to the SERS enhancement factor through the chemical mechanism. In turn, the chemical flexibility of Reduced Graphene Oxide (RGO) enables tunable adsorption of molecules or cells on SERS active surfaces. Graphene oxide composites with SERS active nanoparticles have been also applied for Raman imaging of cells. This review presents a survey of SERS assays employing graphene or RGO emphasizing the improvement of SERS enhancement brought by graphene or RGO. The structure and physical properties of graphene and RGO will be discussed too.
Collapse
Affiliation(s)
- Anna Jabłońska
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Mateusz Kasztelan
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Sylwia Berbeć
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Barbara Pałys
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| |
Collapse
|
20
|
Mahmoud AYF, Rusin CJ, McDermott MT. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer. Analyst 2020; 145:1396-1407. [DOI: 10.1039/c9an02439e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal gold nanostars for rapid and in-solution SERS measurements of methimazole in urine using a handheld Raman spectrometer.
Collapse
Affiliation(s)
| | - Casey J. Rusin
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
21
|
Yap PL, Kabiri S, Auyoong YL, Tran DNH, Losic D. Tuning the Multifunctional Surface Chemistry of Reduced Graphene Oxide via Combined Elemental Doping and Chemical Modifications. ACS OMEGA 2019; 4:19787-19798. [PMID: 31788611 PMCID: PMC6882126 DOI: 10.1021/acsomega.9b02642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 06/02/2023]
Abstract
The synthesis of graphene materials with multiple surface chemistries and functionalities is critical for further improving their properties and broadening their emerging applications. We present a simple chemical approach to obtain bulk quantities of multifunctionalized reduced graphene oxide (rGO) that combines chemical doping and functionalization using the thiol-ene click reaction. Controllable modulation of chemical multifunctionality was achieved by simultaneous nitrogen doping and gradual chemical reduction of graphene oxide (GO) using ammonia and hydrazine, followed by covalent attachment of amino-terminated thiol molecules using the thiol-ene click reaction. A series of N-doped rGO (N-rGO) precursors with different levels of oxygen groups were synthesized by adjusting the amount of reducing agent (hydrazine), followed by subsequent covalent attachment of cysteamine via the thermal thiol-ene click reaction to yield different ratios of mixed functional groups including N (pyrrolic N, graphitic N, and aminic N), S (thioether S, thiophene S, and S oxides), and O (hydroxyl O, carbonyl O, and carboxyl O) on the reduced GO surface. Detailed XPS analysis confirmed the disappearance of unstable pyridinic N in cys-N-rGO and the reduction degree threshold of N-rGO for effective cysteamine modification to take place. Our study establishes a strong correlation between different reduction degrees of N-rGO with several existing oxygen functional groups and addition of new tunable functionalities including covalently attached nitrogen (amino) and sulfur (C-S-C, C=S, and S-O). This simple and versatile approach provides a valuable contribution for practical designing and synthesis of a broad range of functionalized graphene materials with tailorable functionalities, doping levels, and interfacial properties for potential applications such as polymer composites, supercapacitors, electrocatalysis, adsorption, and sensors.
Collapse
Affiliation(s)
- Pei Lay Yap
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Shervin Kabiri
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
- School
of Agriculture, Food and Wine, The University
of Adelaide, PMB 1, Waite
Campus, Glen Osmond, SA 5064, Australia
| | - Yow Loo Auyoong
- Research
& Business Partnerships, Research Services, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Diana N. H. Tran
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
23
|
Yap PL, Kabiri S, Tran DNH, Losic D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6350-6362. [PMID: 30507147 DOI: 10.1021/acsami.8b17131] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineering of multifunctional binding chemistry on graphene composites using thiol-ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol-ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L-1 dosage of adsorbent used to remove 95% Hg (II) (∼1.5 mg L-1) within 90 min. The high adsorption capacity of 169 ± 19 mg g-1, high selectivity toward Hg in the presence of 30 times higher concentration of competing ions (Cd, Cu, Pb) and high regeneration ability (>97%) for five consecutive adsorption-desorption cycles were achieved. Comparative study with commercial activated carbon using spiked Hg (II) river water confirmed the high performance and potential of this adsorbent for real mercury remediation of environmental and drinking waters.
Collapse
Affiliation(s)
- Pei Lay Yap
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Shervin Kabiri
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Diana N H Tran
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Dusan Losic
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
24
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Shi R, Liu X, Ying Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6525-6543. [PMID: 28920678 DOI: 10.1021/acs.jafc.7b03075] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.
Collapse
Affiliation(s)
- Ruyi Shi
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
- Zhejiang A&F University , 88 Huanchengdong Road , Hangzhou , Zhejiang 311300 , China
| |
Collapse
|
26
|
Montjoy DG, Bahng JH, Eskafi A, Hou H, Kotov NA. Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. J Am Chem Soc 2018; 140:7835-7845. [DOI: 10.1021/jacs.8b02666] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Bahrani S, Razmi Z, Ghaedi M, Asfaram A, Javadian H. Ultrasound-accelerated synthesis of gold nanoparticles modified choline chloride functionalized graphene oxide as a novel sensitive bioelectrochemical sensor: Optimized meloxicam detection using CCD-RSM design and application for human plasma sample. ULTRASONICS SONOCHEMISTRY 2018; 42:776-786. [PMID: 29429731 DOI: 10.1016/j.ultsonch.2017.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
In this research, gold nanoparticles modified choline chloride functionalized graphene oxide (AuNPs-ChCl-GO) was synthesized through the assistance of ultrasound and fabricated as a novel bioelectrochemical sensor and utilized for the sensitive detection of meloxicam (MEL). The morphological and structural features of the AuNPs-ChCl-GO were characterized using different techniques including FTIR, TEM, FE-SEM, EDX, and XRD. The modified electrode showed a remarkable improvement in the anodic oxidation activity of MEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The biosensor composition and measurement conditions were optimized using an experimental design. The differential pulse voltammetry (DPVs) exhibited expanded linear dynamic in the range of 9.0 × 10-9 to 8.5 × 10-7 M for MEL in Britton-Robinson buffer at pH = 4.0 with a detection limit of 1.008 × 10-9 M. The practical utility of the modified electrode was demonstrated by the accurate detection of MEL in human plasma sample.
Collapse
Affiliation(s)
- Sonia Bahrani
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Zahra Razmi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Lai H, Xu F, Zhang Y, Wang L. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J Mater Chem B 2018; 6:4008-4028. [DOI: 10.1039/c8tb00902c] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene-based SERS substrates are classified and introduced, and their applications in biosensing-related fields are reviewed.
Collapse
Affiliation(s)
- Huasheng Lai
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Fugang Xu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yue Zhang
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|
29
|
Lee JW, Jung H, Cho HH, Lee JH, Nam Y. Gold nanostar-mediated neural activity control using plasmonic photothermal effects. Biomaterials 2017; 153:59-69. [PMID: 29102745 DOI: 10.1016/j.biomaterials.2017.10.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/30/2023]
Abstract
Nanomaterials have emerged as an essential tool for the understanding of cellular level mechanism in the fields of biology and medical science. Recently, researchers have been studying the regulation of neuronal activity using plasmonic nanoparticles and light, and it has been reported that photothermal effects could lead to both excitation and inhibition of neuronal cells. So far, only a few photothermal transducers have been applied to modulate neural activity. In this paper, we synthesized biocompatible gold nanostars (AuNSs) which generate heat by absorbing near-infrared (NIR) light. And we used the AuNS to inhibit the activity of neurons through light stimulation. We have demonstrated that AuNS inhibits the neural activity by NIR laser in both chip-attached mode and cell-attached mode. We also confirmed the suppression of single neuron signal by using digital micromirror device (DMD) set up. This approach is possible to inhibit the neural firing by controlling the intensity of light, and overcome the disadvantages of conventional electrochemical stimulation methods. This method of NIR-mediated stimulating neurons using light sensitive AuNS will be a powerful tool for neuromodulation researches and neuroscience studies.
Collapse
Affiliation(s)
- Jee Woong Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyunjun Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hui Hun Cho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Jung Heon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
30
|
Kim YK, Jang H, Kang K. Seed-mediated Growth of Au Nanoplates on the Functionalized Reduced Graphene Oxide Films for Surface-enhanced Raman Scattering. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials; Korea Institute of Science and Technology; San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 Korea
| | - Hongje Jang
- Department of Chemistry; Kwangwoon University; Seoul 139-701 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin 446-701 South Korea
| |
Collapse
|
31
|
Jiang T, Wang X, Tang S, Zhou J, Gu C, Tang J. Seed-mediated synthesis and SERS performance of graphene oxide-wrapped Ag nanomushroom. Sci Rep 2017; 7:9795. [PMID: 28852103 PMCID: PMC5574994 DOI: 10.1038/s41598-017-10262-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022] Open
Abstract
A facile seed-mediated method was developed to modify core-shell Ag nanosphere@PSPAA with another Ag layer for achieving an enhancement of their surface-enhanced Raman scattering (SERS) activity. Interestingly, an Ag bridge in the polymer shell connected the inner and outer Ag layers, resulting in a mushroom-like nanostructure. The outer Ag grew around the polymer shell to form the cap of the nanomushrooms (NMs) with the extension of the reaction time. The epitaxial growth mechanism of this novel nanostructure was investigated by tuning the type of seed from nanosphere to nanocube and nanorod. With the growth of the outer Ag cap, the SERS intensity of these Ag NMs increased significantly together with the red-shifting and broadening of their typical localized surface plasmon resonance band. Such a phenomenon can be attributed to the formation of SERS hotspots between the inner and outer Ag layers. The Ag NMs were then wrapped with a graphene oxide (GO) shell via static interactions. The GO-wrapped Ag NMs exhibited a further better SERS performance in terms of sensitivity, homogeneity and stability compared with non-wrapped ones, indicating that the heterostructure could be potentially useful for SERS-based immunoassay.
Collapse
Affiliation(s)
- Tao Jiang
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China.
| | - Xiaolong Wang
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Shiwei Tang
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Jun Zhou
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Chenjie Gu
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Jing Tang
- Institute of Physics, Ningbo University of Technology, Ningbo, 315016, P. R. China
| |
Collapse
|
32
|
Shan F, Zhang XY, Fu XC, Zhang LJ, Su D, Wang SJ, Wu JY, Zhang T. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Sci Rep 2017; 7:6813. [PMID: 28754959 PMCID: PMC5533772 DOI: 10.1038/s41598-017-07311-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
One of the main challenges for highly sensitive surface-enhanced Raman scattering (SERS) detection is the noise interference of fluorescence signals arising from the analyte molecules. Here we used three types of gold nanostars (GNSs) SERS probes treated by different surface modification methods to reveal the simultaneously existed Raman scattering enhancement and inhibiting fluorescence behaviors during the SERS detection process. As the distance between the metal nanostructures and the analyte molecules can be well controlled by these three surface modification methods, we demonstrated that the fluorescence signals can be either quenched or enhanced during the detection. We found that fluorescence quenching will occur when analyte molecules are closely contacted to the surface of GNSs, leading to a ~100 fold enhancement of the SERS sensitivity. An optimized Raman signal detection limit, as low as the level of 10-11 M, were achieved when Rhodamine 6 G were used as the analyte. The presented fluorescence-free GNSs SERS substrates with plentiful hot spots and controllable surface plasmon resonance wavelengths, fabricated using a cost-effective self-assembling method, can be very competitive candidates for high-sensitive SERS applications.
Collapse
Affiliation(s)
- Feng Shan
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Xiao-Yang Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Xing-Chang Fu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Li-Jiang Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Dan Su
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Shan-Jiang Wang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Jing-Yuan Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
33
|
Jalani G, Jeyachandran D, Bertram Church R, Cerruti M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. NANOSCALE 2017; 9:10161-10166. [PMID: 28702585 DOI: 10.1039/c7nr00378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Perfluorocarbon (PFC) emulsions are capable of absorbing large quantities of oxygen. They are widely used as blood alternates for quick oxygenation of tissues. However, they are unsuitable for applications where sustained oxygen supply is desired over an extended period of time. Here, we have designed a new PFC oxygen delivery system that combines perfluorodecalin with graphene oxide (GO), where GO acts both as an emulsifier and a stabilizing agent. The resulting emulsions (PFC@GO) release oxygen at least one order of magnitude slower than emulsions prepared with other common surfactants. The release rate can be controlled by varying the thickness of the GO layer. Controlled release of oxygen make these emulsions excellent oxygen carriers for applications where sustained oxygen delivery is required e.g. in tissue regeneration and vascular wound healing.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | | | - Richard Bertram Church
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| |
Collapse
|
34
|
Qiu X, You X, Chen X, Chen H, Dhinakar A, Liu S, Guo Z, Wu J, Liu Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int J Nanomedicine 2017; 12:4349-4360. [PMID: 28652737 PMCID: PMC5473606 DOI: 10.2147/ijn.s130648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SERS bioimaging. The fabricated GO@ GNRs could efficiently load various NIR probes, and the in vitro evaluation indicated that the nanoplatform could exhibit a higher NIR SERS activity in comparison with traditional gold nanostructures. The GOs were prepared by directly pyrolyzing citric acid for greater convenience, and GO@GNRs were fabricated via a facile synthesis strategy. Higher NIR SERS activity, facile synthesis method, excellent biocompatibility, and superb stability make the GO@GNRs/probe complex promising nanoprobes for NIR SERS-based bioimaging applications.
Collapse
Affiliation(s)
- Xuejun Qiu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Xinru You
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xing Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Haolin Chen
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Arvind Dhinakar
- Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Songhao Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Zhouyi Guo
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiming Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| |
Collapse
|
35
|
Li Y, Dykes J, Gilliam T, Chopra N. A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. NANOSCALE 2017; 9:5263-5272. [PMID: 28397912 DOI: 10.1039/c6nr09896g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heterostructures of one-dimensional nanowire supported graphene/plasmonic nanoparticles are promising for future SERS-based chemical sensors. In this paper, we report a novel heterostructured SERS substrate composed of free-standing Si nanowires and surface-decorating Au/graphene nanoparticles. We successfully developed a unique CVD approach for the cost-effective and large-scale growth of free-standing Si nanowires. Au nanoparticles were decorated on the Si nanowires using a galvanic deposition - an annealing approach. This was followed by the selective growth of a multilayer graphene shell on the Au nanoparticles via a xylene-based CVD approach. Discrete dipole approximation simulation was used to understand the plasmonic properties of these Si nanowire-based heterostructures. The results indicate that the incorporation of Au nanoparticles and graphene on Si nanowires has a significant influence on their light absorption and scattering properties. Meanwhile, a strong surface plasmon coupling was observed at the interface regions of different materials (e.g., Si/Au, Au/graphene), introducing multiple co-enhanced "hot spots" on the heterostructures. We found that our new heterostructures have a combined effect of an electromagnetic mechanism and a chemical mechanism for SERS and demonstrate an enhancement factor of 106-107.
Collapse
Affiliation(s)
- Yuan Li
- Department of Mathematics Department of Metallurgical and Materials Engineering (MTE), Center for Materials for Information Technology (MINT), Tuscaloosa, AL 35487, USA.
| | | | | | | |
Collapse
|
36
|
Kim JE, Choi JH, Colas M, Kim DH, Lee H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 2016; 80:543-559. [DOI: 10.1016/j.bios.2016.02.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
|
37
|
Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK. Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E406. [PMID: 28773528 PMCID: PMC5456764 DOI: 10.3390/ma9060406] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nurhidayatullaili Muhd Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wan Jefrey Basirun
- Institute of Postgraduate Studies, Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| |
Collapse
|
38
|
Jiang T, Wang X, Zhou J, Chen D, Zhao Z. Hydrothermal synthesis of Ag@MSiO2@Ag three core-shell nanoparticles and their sensitive and stable SERS properties. NANOSCALE 2016; 8:4908-4914. [PMID: 26876371 DOI: 10.1039/c6nr00006a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An Ag@MSiO2@Ag three core-shell architecture was synthesized by a facial hydrothermal method. The features of the sample were characterized by SEM, TEM, and AFM images, EDS analyses and absorption spectra. This novel nanostructure exhibited excellent SERS properties due to the formation of hot spots around the inner and outer Ag NPs, which were identified by theoretical calculations. A detection limit of the analyte molecule was obtained as low as 10(-11) M by using this SERS nanostructure. Moreover, the homogeneity of SERS signals from the three core-shell nanostructure was checked by Raman mapping. Our studies show that the unique Ag@MSiO2@Ag three core-shell nanostructure has significant potential to realize a SERS substrate with both sensitivity and stability, which are important in SERS-based immunoassay.
Collapse
Affiliation(s)
- Tao Jiang
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| | - Xiaolong Wang
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| | - Jun Zhou
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| | - Dong Chen
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| | - Ziqi Zhao
- Institute of Photonics, Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
39
|
Dias DR, Moreira AF, Correia IJ. The effect of the shape of gold core–mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration. J Mater Chem B 2016; 4:7630-7640. [DOI: 10.1039/c6tb02668k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analysis of the effect of shape on the biological performances of gold core–mesoporous silica shell nanoparticles.
Collapse
Affiliation(s)
- Diana R. Dias
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| |
Collapse
|
40
|
Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 2016; 45:3145-87. [DOI: 10.1039/c6cs00195e] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Chaban VV, Prezhdo OV. Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. NANOSCALE 2015; 7:17055-17062. [PMID: 26420562 DOI: 10.1039/c5nr04647e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for the GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on the applied conditions, make determination of the GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the 'edge' positions are systematically more favorable than the 'center' and 'side' positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of the graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering the GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications.
Collapse
Affiliation(s)
- Vitaly V Chaban
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280, São José dos Campos, SP, Brazil.
| | | |
Collapse
|