1
|
Pawlas J, André C, Rasmussen JH, Ludemann-Hombourger O. Brønsted Acid-Lewis Acid (BA-LA) Induced Final Deprotection/Peptide Resin Cleavage in Fmoc/ t-Bu Solid-Phase Peptide Synthesis: HCl/FeCl 3 and AcOH/FeCl 3 as Viable PFAS-Free Alternatives for TFA. Org Lett 2024; 26:6787-6791. [PMID: 39073347 DOI: 10.1021/acs.orglett.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The widely used Fmoc/t-Bu solid-phase peptide synthesis (SPPS) is hampered by relying on corrosive, per/polyfluoroalkyl substance (PFAS) classified trifluoroacetic acid (TFA) as a universal protecting group (PG) removal/resin cleavage reagent. We report that suitable combinations of Brønsted acids (BAs) and Lewis acids (LAs) such as HCl/FeCl3 and AcOH/FeCl3 constitute viable alternatives for TFA as PFAS-free cleavage agents. Using water miscible dimethyl carbonate (DMC) and acetonitrile (MeCN) as solvents enabled diluting cleavage mixtures with suitable aqueous solutions, allowing for direct use in purification in which removal of >99.99% iron from an HCl/FeCl3 induced cleavage was demonstrated.
Collapse
Affiliation(s)
- Jan Pawlas
- PolyPeptide, Limhamnsvägen 108, PO Box 30089, 20061 Limhamn, Sweden
| | - Christophe André
- PolyPeptide, Bioparc 3, 850 Bd Sebastien Brant, 67400 Illkirch, France
| | - Jon H Rasmussen
- PolyPeptide, Limhamnsvägen 108, PO Box 30089, 20061 Limhamn, Sweden
| | | |
Collapse
|
2
|
Hering A, Braga Emidio N, Muttenthaler M. Expanding the versatility and scope of the oxime ligation: rapid bioconjugation to disulfide-rich peptides. Chem Commun (Camb) 2022; 58:9100-9103. [PMID: 35880482 PMCID: PMC9367247 DOI: 10.1039/d2cc03752a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
The oxime ligation is a valuable bioorthogonal conjugation reaction but with limited compatibility with disulfide-rich peptides/proteins and time-sensitive applications. Here we overcome these limitations by introducing a strategy that supports regiospecific control, oxidative folding, production of stable aminooxy-precursors for on-demand modification, and complete ligation within 5 min.
Collapse
Affiliation(s)
- Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
- Institute of Biological Chemistry, University of Vienna, Währingerstraße 38, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Abboud SA, Amoura M, Madinier J, Renoux B, Papot S, Piller V, Aucagne V. Enzyme‐Cleavable Linkers for Protein Chemical Synthesis through Solid‐Phase Ligations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Skander A. Abboud
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Jean‐Baptiste Madinier
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Véronique Piller
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
4
|
Abboud SA, Amoura M, Madinier JB, Renoux B, Papot S, Piller V, Aucagne V. Enzyme-Cleavable Linkers for Protein Chemical Synthesis through Solid-Phase Ligations. Angew Chem Int Ed Engl 2021; 60:18612-18618. [PMID: 34097786 DOI: 10.1002/anie.202103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The total synthesis of long proteins requires the assembly of multiple fragments through successive ligations. The need for intermediate purification steps is a strong limitation, particularly in terms of overall yield. One solution to this problem would be solid-supported chemical ligation (SPCL), for which a first peptide segment must be immobilized on a SPCL-compatible solid support through a linker that can be cleaved under very mild conditions to release the assembled protein. The cleavage of SPCL linkers has previously required chemical conditions sometimes incompatible with sensitive protein targets. Herein, we describe an alternative enzymatic approach to trigger cleavage under extremely mild and selective conditions. Optimization of the linker structure and use of a small enzyme able to diffuse into the solid support were key to the success of the strategy. We demonstrated its utility by the assembly of three peptide segments on the basis of native chemical ligation to afford a 15 kDa polypeptide.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Jean-Baptiste Madinier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Véronique Piller
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| |
Collapse
|
5
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
6
|
Pineda-Castañeda HM, Insuasty-Cepeda DS, Niño-Ramírez VA, Curtidor H, Rivera-Monroy ZJ. Designing Short Peptides: A Sisyphean Task? CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200910094034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the last few years, short peptides have become a powerful tool in basic and
applied research, with different uses like diagnostic, antimicrobial peptides, human health
promoters or bioactive peptides, therapeutic treatments, templates for peptidomimetic design,
and peptide-based vaccines. In this endeavor, different approaches and technologies
have been explored, such as bioinformatics, large-scale peptide synthesis, omics sciences,
structure-activity relationship studies, and a biophysical approach, among others, seeking to
obtain the shortest sequence with the best activity. The advantage of short peptides lies in
their stability, ease of production, safety, and low cost. There are many strategies for designing
short peptides with biomedical and industrial applications (targeting the structure, length,
charge, or polarity) or as a starting point for improving their properties (sequence data base,
de novo sequences, templates, or organic scaffolds). In peptide design, it is necessary to keep in mind factors
such as the application (peptidomimetic, immunogen, antimicrobial, bioactive, or protein-protein interaction
inhibitor), the expected target (membrane cell, nucleus, receptor proteins, or immune system), and particular
characteristics (shorter, conformationally constrained, cycled, charged, flexible, polymerized, or pseudopeptides).
This review summarizes the different synthetic approaches and strategies used to design new peptide analogs,
highlighting the achievements, constraints, and advantages of each.
Collapse
Affiliation(s)
| | | | - Víctor A. Niño-Ramírez
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Zuly J. Rivera-Monroy
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
7
|
Vrettos EI, Karampelas T, Sayyad N, Kougioumtzi A, Syed N, Crook T, Murphy C, Tamvakopoulos C, Tzakos AG. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable "click" oxime bond tethers and preclinical evaluation against prostate cancer. Eur J Med Chem 2020; 211:113018. [PMID: 33223264 DOI: 10.1016/j.ejmech.2020.113018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and "click" type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective "click" oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG1, was used for pharmacokinetic studies in mice. The metabolism of GOXG1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid "click" oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics.
Collapse
Affiliation(s)
| | - Theodoros Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Nisar Sayyad
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece
| | - Anastasia Kougioumtzi
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Timothy Crook
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Carol Murphy
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
8
|
Abboud SA, Aucagne V. An optimized protocol for the synthesis of N-2-hydroxybenzyl-cysteine peptide crypto-thioesters. Org Biomol Chem 2020; 18:8199-8208. [PMID: 33034311 DOI: 10.1039/d0ob01737j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a robust upgraded synthetic protocol for the synthesis of N-Hnb-Cys crypto-thioester peptides, useful building blocks for segment-based chemical protein synthesis through native chemical ligation. We recently observed the formation of an isomeric co-product when using a different solid support than the originally-reported one, thus hampering the general applicability of the methodology. We undertook a systematic study to characterize this compound and identify the parameters favouring its formation. We show here that epimerization from l- to d-cysteine occurred during the key solid-supported reductive amination step. We also observed the formation of imidazolidinones by-products arising from incomplete reduction of the imine. Structural characterization combined with the deciphering of underlying reaction mechanisms allowed us to optimize conditions that abolished the formation of all these side-products.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| |
Collapse
|
9
|
Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019; 24:molecules24101855. [PMID: 31091786 PMCID: PMC6572008 DOI: 10.3390/molecules24101855] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022] Open
Abstract
Peptides constitute molecular diversity with unique molecular mechanisms of action that are proven indispensable in the management of many human diseases, but of only a mere fraction relative to more traditional small molecule-based medicines. The integration of these two therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis and development that provide direction for next-generation research endeavors in this field. Medicinal studies in this area have largely focused upon the application of peptides to selectively enhance small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and steadily emerging extent peptides are being therapeutically employed to complement and diversify the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease, the purpose of the molecular integration remains constant and it is to achieve superior therapeutic outcomes with diminished adverse effects. We review linker technology and conjugation chemistries that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer our perspective on opportunities and obstacles in the field.
Collapse
|
10
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
11
|
Antonatou E, Verleysen Y, Madder A. Singlet oxygen-mediated one-pot chemoselective peptide-peptide ligation. Org Biomol Chem 2018; 15:8140-8144. [PMID: 28914947 DOI: 10.1039/c7ob02245j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We here describe a furan oxidation based site-specific chemical ligation approach using unprotected peptide segments. This approach involves two steps: after photooxidation of a furan-containing peptide, ligation is achieved by reaction of the unmasked keto-enal with C- or N-terminal α-nucleophilic moieties of the second peptide such as hydrazine or hydrazide to form a pyridazinium or pyrrolidinone linkage respectively.
Collapse
Affiliation(s)
- Eirini Antonatou
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium.
| | | | | |
Collapse
|
12
|
Ollivier N, Desmet R, Drobecq H, Blanpain A, Boll E, Leclercq B, Mougel A, Vicogne J, Melnyk O. A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins. Chem Sci 2017; 8:5362-5370. [PMID: 28970915 PMCID: PMC5609153 DOI: 10.1039/c7sc01912b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/27/2017] [Indexed: 11/21/2022] Open
Abstract
We show that the combination of solid phase and solution ligation techniques facilitates the production of a challenging and biologically active protein made of 180 amino acids.
Chemical protein synthesis gives access to well-defined native or modified proteins that are useful for studying protein structure and function. The majority of proteins synthesized up to now have been produced using native chemical ligation (NCL) in solution. Although there are significant advantages to assembling large peptides or proteins by solid phase ligation, reports of such approaches are rare. We report a novel solid phase method for protein synthesis which relies on the chemistry of the acetoacetyl group and ketoxime ligation for the attachment of the peptide to the solid support, and on a tandem transoximation/rearrangement process for the detachment of the target protein. Importantly, we show that the combination of solid phase and solution ligation techniques facilitates the production of a challenging and biologically active protein made of 180 amino acids. We show also that the solid phase method enables the purification of complex peptide segments through a chemoselective solid phase capture/release approach.
Collapse
Affiliation(s)
- N Ollivier
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - R Desmet
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - H Drobecq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - A Blanpain
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - E Boll
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - B Leclercq
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - A Mougel
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - J Vicogne
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| | - O Melnyk
- UMR CNRS 8161 CNRS , Université de Lille , Institut Pasteur de Lille , 1 rue du Pr Calmette , 59021 Lille Cedex , France .
| |
Collapse
|
13
|
Zitterbart R, Krumrey M, Seitz O. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates. J Pept Sci 2017; 23:539-548. [DOI: 10.1002/psc.3006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Michael Krumrey
- Department of Chemistry; Humboldt University Berlin; Berlin Germany
| | - Oliver Seitz
- Department of Chemistry; Humboldt University Berlin; Berlin Germany
| |
Collapse
|
14
|
Loibl SF, Harpaz Z, Zitterbart R, Seitz O. Total chemical synthesis of proteins without HPLC purification. Chem Sci 2016; 7:6753-6759. [PMID: 28451120 PMCID: PMC5355786 DOI: 10.1039/c6sc01883a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/02/2016] [Indexed: 12/13/2022] Open
Abstract
This work presents the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step.
The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins which were obtained in 8–33% overall yield with 90–98% purity despite the omission of HPLC purification.
Collapse
Affiliation(s)
- S F Loibl
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Str. 2 , 12489 Berlin , Germany . ; ; Tel: +49 030 2093 7446
| | - Z Harpaz
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Str. 2 , 12489 Berlin , Germany . ; ; Tel: +49 030 2093 7446
| | - R Zitterbart
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Str. 2 , 12489 Berlin , Germany . ; ; Tel: +49 030 2093 7446
| | - O Seitz
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Str. 2 , 12489 Berlin , Germany . ; ; Tel: +49 030 2093 7446
| |
Collapse
|
15
|
Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. Mechanism for the enhanced reactivity of 4-mercaptoprolyl thioesters in native chemical ligation. RSC Adv 2016. [DOI: 10.1039/c6ra13793h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ring-strain-precluded strategy benefiting from entropy effects and n → π* orbital interaction, enhances the reactivity of C-terminal prolyl thioesters in NCL.
Collapse
Affiliation(s)
| | - Zhe-Yuan Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Lei Liu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yuan-Ye Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Jing Shi
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
16
|
Pagel M, Meier R, Braun K, Wiessler M, Beck-Sickinger AG. On-resin Diels–Alder reaction with inverse electron demand: an efficient ligation method for complex peptides with a varying spacer to optimize cell adhesion. Org Biomol Chem 2016; 14:4809-16. [DOI: 10.1039/c6ob00314a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DARinvon resin is a new orthogonal reaction in peptide synthesis and the benefits for cell adhesion are discussed.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Leipzig
- Germany
| | - René Meier
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Leipzig
- Germany
| | - Klaus Braun
- Deutsches Krebsforschungszentrum
- 69120 Heidelberg
- Germany
| | | | | |
Collapse
|
17
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015; 54:12374-8. [DOI: 10.1002/anie.201503309] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Indexed: 11/11/2022]
|
18
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Galibert M, Piller V, Piller F, Aucagne V, Delmas AF. Combining triazole ligation and enzymatic glycosylation on solid phase simplifies the synthesis of very long glycoprotein analogues. Chem Sci 2015; 6:3617-3623. [PMID: 30155000 PMCID: PMC6085731 DOI: 10.1039/c5sc00773a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023] Open
Abstract
The solid-phase chemical assembly of a protein through iterative chemoselective ligation of unprotected peptide segments can be followed with chemical and/or enzymatic transformations of the resulting immobilized protein, the latter steps thus benefitting from the advantages provided by the solid support. We demonstrate here the usefulness of this strategy for the chemo-enzymatic synthesis of glycoprotein analogues. A linker was specifically designed for application to the synthesis of O-glycoproteins: this new linker is readily cleaved under mild aqueous conditions compatible with very sensitive glycosidic bonds, but is remarkably stable under a wide range of chemical and biochemical conditions. It was utilized for solid-supported N-to-C peptidomimetic triazole ligation followed by enzymatic glycosylation, ultimately leading to a very large MUC1-derived glycoprotein containing 160 amino acid residues, 24 α-GalNAc moieties linked to Ser and Thr, and 3 triazoles as peptide bond mimetics.
Collapse
Affiliation(s)
- Mathieu Galibert
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Véronique Piller
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Friedrich Piller
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| |
Collapse
|
20
|
Jbara M, Seenaiah M, Brik A. Solid phase chemical ligation employing a rink amide linker for the synthesis of histone H2B protein. Chem Commun (Camb) 2015; 50:12534-7. [PMID: 25196573 DOI: 10.1039/c4cc06499b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Presented here is a solid phase chemical ligation strategy employing native chemical ligation and the commercially available Rink-amide linker as a key element in our approach. The method was applied for the synthesis of histone H2B, which sets the ground for the rapid preparation of posttranslationally modified analogues of this protein.
Collapse
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | | | |
Collapse
|