1
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Chowdhury M, Hudson RHE. Exploring Nucleobase Modifications in Oligonucleotide Analogues for Use as Environmentally Responsive Fluorophores and Beyond. CHEM REC 2023; 23:e202200218. [PMID: 36344432 DOI: 10.1002/tcr.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Over the past two decades, it has become abundantly clear that nucleic acid biochemistry, especially with respect to RNA, is more convoluted and complex than previously appreciated. Indeed, the application and exploitation of nucleic acids beyond their predestined role as the medium for storage and transmission of genetic information to the treatment and study of diseases has been achieved. In other areas of endeavor, utilization of nucleic acids as a probe molecule requires that they possess a reporter group. The reporter group of choice is often a luminophore because fluorescence spectroscopy has emerged as an indispensable tool to probe the structural and functional properties of modified nucleic acids. The scope of this review spans research done in the Hudson lab at The University of Western Ontario and is focused on modified pyrimidine nucleobases and their applications as environmentally sensitive fluorophores, base discriminating fluorophores, and in service of antisense applications as well as tantalizing new results as G-quadruplex destabilizing agents. While this review is a focused personal account, particularly influential work of colleagues in the chemistry community will be highlighted. The intention is not to make a comprehensive review, citations to the existing excellent reviews are given, any omission of the wonderful and impactful work being done by others globally is not intentional. Thus, this review will briefly introduce the context of our work, summarize what has been accomplished and finish with the prospects of future developments.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
3
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
4
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
5
|
Shinohara A, Shao G, Nakanishi T, Shinmori H. Porphyrin Photoabsorption and Fluorescence Variation with Adsorptive Loading on Gold Nanoparticles. Front Chem 2021; 9:777041. [PMID: 34888295 PMCID: PMC8650619 DOI: 10.3389/fchem.2021.777041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Here, we report the photophysical structure–property relationship of porphyrins adsorbed on gold nanoparticles. The number of porphyrin–alkanethiolate adsorbates per particle was adjusted by a post-synthetic thiol/thiolate exchange reaction on 1-dodecanethiolate–protected gold nanoparticles. Even with a low loading level of adsorbates (<10% of all thiolate sites on gold nanoparticles), the shoulder absorption at the Soret band was intensified, indicating the formation of aggregates of porphyrin adsorbates on the nanoparticles. Steady-state fluorescence quantum yields could be adjusted by the bulkiness of substituents at the meso-positions of the porphyrin or the methylene linker chain length, regardless of the porphyrin loading level and the nanoparticle diameter.
Collapse
Affiliation(s)
- Akira Shinohara
- School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Faculty of Life and Environmental Science, Graduate Faculty of Interdisciplinary Research, Department of Biotechnology, University of Yamanashi, Kofu, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Guang Shao
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Takashi Nakanishi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Hideyuki Shinmori
- Faculty of Life and Environmental Science, Graduate Faculty of Interdisciplinary Research, Department of Biotechnology, University of Yamanashi, Kofu, Japan
| |
Collapse
|
6
|
Saady A, Böttner V, Meng M, Varon E, Shav-Tal Y, Ducho C, Fischer B. An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breast cancer marker. Eur J Med Chem 2019; 173:99-106. [PMID: 30991278 DOI: 10.1016/j.ejmech.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 04/04/2019] [Indexed: 01/15/2023]
Abstract
Diagnosis and treatment of breast cancer can be greatly enhanced and personalized based on the quantitative detection of mRNA markers. Here, we targeted the development of a fluorescent oligonucleotide probe to detect specifically the HER-2 mRNA breast cancer marker. We have selected the chromophore of the Green Fluorescent Protein (GFP), 4-hydroxybenzylidene imidazolinone (HBI), as a fluorophore covalently bound to an oligonucleotide probe and potentially capable of intercalating within a probe-mRNA duplex. We first synthesized the two-ring scaffold of the HBI chromophore 5 and coupled it to 2'-deoxyuridine at C5-position via a 7-atom-spacer, to give 4. Indeed, in the highly viscous glycerol used to mimic the reduced conformational flexibility of the intercalated HBI, chromophore 4 displayed a quantum yield of 0.29 and brightness of 20600 M-1cm-1, while no fluorescent signal was observed in methanol. Next, we synthesized a 20-mer oligonucleotide probe incorporating 4 at position 6 (5'-CCCGTUTCAACAGGAGTTTC-3'), ONHBI, targeting nucleotides 1233-1253 of HER-2 mRNA. A 16-fold enhancement of ONHBI emission intensity upon hybridization with the complementary RNA vs that of the oligonucleotide probe alone indicated the presence of target oligonucleotide and proved the intercalation of the chromophore (quantum yield 0.52; brightness 23500 M-1cm-1). Even more, an 11-fold enhancement of ONHBI emission (quantum yield 0.50; brightness 23200 M-1cm-1) was observed when the probe was mixed with total RNA extract from a human cell line that has high levels of HER2 mRNA expression. Thus, we propose ONHBI as a promising probe potentially useful for the sensitive and specific detection of HER2 mRNA breast cancer marker.
Collapse
Affiliation(s)
- Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Verena Böttner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Melissa Meng
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Eli Varon
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yaron Shav-Tal
- Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
7
|
Shakirova JR, Shimada M, Olisov DA, Starova GL, Nishihara H, Tunik SP. Dinuclear Diphosphine Complexes of Gold(I) Alkynyls, the Effects of Alkynyl Substituents onto Photophysical Behavior. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201700415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia R. Shakirova
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya emb. 199034 St. Petersburg Russia
| | - Masaki Shimada
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Dmitrii A. Olisov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya emb. 199034 St. Petersburg Russia
| | - Galina L. Starova
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya emb. 199034 St. Petersburg Russia
| | - Hiroshi Nishihara
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku 113-0033 Tokyo Japan
| | - Sergey P. Tunik
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya emb. 199034 St. Petersburg Russia
| |
Collapse
|
8
|
Lee HJ, Go GH, Ro JJ, Kim BH. Detection of cofilin mRNA by hybridization-sensitive double-stranded fluorescent probes. RSC Adv 2018; 8:7514-7517. [PMID: 35539109 PMCID: PMC9078427 DOI: 10.1039/c7ra13349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
We have developed hybridization-sensitive fluorescent oligonucleotide probes that, in the presence of quencher strands, undergo efficient fluorescence quenching through the formation of partial DNA/DNA duplexes.
Collapse
Affiliation(s)
- Ha Jung Lee
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Gui Han Go
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jong Jin Ro
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| |
Collapse
|
9
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
10
|
Freeman NS, Moore CE, Wilhelmsson LM, Tor Y. Chromophoric Nucleoside Analogues: Synthesis and Characterization of 6-Aminouracil-Based Nucleodyes. J Org Chem 2016; 81:4530-9. [PMID: 27128151 PMCID: PMC5493935 DOI: 10.1021/acs.joc.6b00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nucleodyes, visibly colored chromophoric nucleoside analogues, are reported. Design criteria are outlined and the syntheses of cytidine and uridine azo dye analogues derived from 6-aminouracil are described. Structural analysis shows that the nucleodyes are sound structural analogues of their native nucleoside counterparts, and photophysical studies demonstrate that the nucleodyes are sensitive to microenvironmental changes. Quantum chemical calculations are presented as a valuable complementary tool for the design of strongly absorbing nucleodyes, which overlap with the emission of known fluorophores. Förster critical distance (R0) calculations determine that the nucleodyes make good FRET pairs with both 2-aminopurine (2AP) and pyrrolocytosine (PyC). Additionally, unique tautomerization features exhibited by 5-(4-nitrophenylazo)-6-oxocytidine (8) are visualized by an extraordinary crystal structure.
Collapse
Affiliation(s)
- Noam S. Freeman
- Department of Chemistry and Biochemistry, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United
States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United
States
| | - L. Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering/Chemistry
and Biochemistry, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United
States
| |
Collapse
|
11
|
Cheng KG, Su CH, Huang JY, Liu J, Zheng YT, Chen ZF. Conjugation of Uridine with Oleanolic Acid Derivatives as Potential Antitumor Agents. Chem Biol Drug Des 2016; 88:329-40. [DOI: 10.1111/cbdd.12758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/28/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Ke-Guang Cheng
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 China
| | - Chun-Hua Su
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 China
| | - Jia-Yan Huang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 China
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Yuan-Ting Zheng
- Department of Clinical Pharmacy; School of Pharmacy; Fudan University; Shanghai 201203 China
| | - Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy of Guangxi Normal University; Guilin 541004 China
| |
Collapse
|