1
|
Wang Y, Ye Z, Han T, Du Y, Xue J. Transient spectroscopic insights into nitroindole's T 1 state: Elucidating its intermediates and unique photochemical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124555. [PMID: 38823242 DOI: 10.1016/j.saa.2024.124555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Indoles are notable for their distinct photophysical and photochemical properties, making them useful indicators in biological systems and promising candidates for a variety of pharmaceutical applications. While some indoles exhibit room temperature phosphorescence, such a phenomenon has not been observed in nitroindoles. Typically, adding of a nitro group into aromatic compounds promotes ultrafast intersystem crossing and increases the formation quantum yield of the lowest excited triplet (T1). Therefore, understanding the reactivity of nitroindoles' T1 states is imperative. This study investigated the physical properties and chemical reactivities of the T1 state of 6-nitroindole (3HN-6NO2) in both polar aprotic and protic solvents, using transient absorption spectroscopy. Our results demonstrate the basicity and acidity of 3HN-6NO2, emphasizing its potential for protonation and dissociation in mildly acidic and basic conditions, respectively. Furthermore, 3HN-6NO2 has a high oxidizing capacity, participating in electron transfer reactions and proton-coupled electron transfer to produce radicals. Interestingly, in protic solvents like alcohols, 3HN-6NO2 dissociates at the -NH group and forms N-H…O hydrogen-bonded complexes with the nitro group. By identifying transient absorption spectra of intermediates and quantifying kinetic reaction rate constants, we illuminate the unique properties of the T1 state nitroindoles, enriching our understanding of their photophysical and photochemical behaviors. The results of this study have significant implications for their potential application in both biological systems and materials science.
Collapse
Affiliation(s)
- Yangxin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhao Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Jiadan Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Ye Z, Du Y, Pan X, Zheng X, Xue J. Electron transfer from guanosine to the lowest triplet excited state of 4-nitroindole through hydrogen-bonded complex. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Täubert S, Zhang YH, Martinez MM, Siepel F, Wöltjen E, Leonov A, Griesinger C. Lanthanide Tagging of Oligonucleotides to Nucleobase for Paramagnetic NMR. Chembiochem 2020; 21:3333-3337. [PMID: 32687667 PMCID: PMC7754328 DOI: 10.1002/cbic.202000417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Indexed: 12/03/2022]
Abstract
Although lanthanide tags, which have large anisotropic magnetic susceptibilities, have already been introduced to enrich NMR parameters by long‐range pseudoconact shifts (PCSs) and residual dipolar couplings (RDCs) of proteins, their application to nucleotides has so far been limited to one previous report, due to the high affinities of lanthanides for the phosphodiester backbone of nucleotides and difficult organic synthesis. Herein, we report successful attachment of a lanthanide tag to a chemically synthesized oligonucleotide via a disulfide bond. NMR experiments reveal PCSs of up to 1 ppm and H−H RDCs of up to 8 Hz at 950 MHz. Although weaker magnetic alignment was achieved than with proteins, the paramagnetic data could be fitted to the known structure of the DNA, taking the mobility of the tag into account. While further rigidification of the tag is desirable, this tag could also be used to measure heteronuclear RDCs of 13C,15N‐labeled chemically synthesized DNA and RNA.
Collapse
Affiliation(s)
- Sebastian Täubert
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Yong-Hui Zhang
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mitcheell Maestre Martinez
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Siepel
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Edith Wöltjen
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Andrei Leonov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Yang Z, Kim HJ, Le JT, McLendon C, Bradley KM, Kim MS, Hutter D, Hoshika S, Yaren O, Benner SA. Nucleoside analogs to manage sequence divergence in nucleic acid amplification and SNP detection. Nucleic Acids Res 2019; 46:5902-5910. [PMID: 29800323 PMCID: PMC6159519 DOI: 10.1093/nar/gky392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 01/18/2023] Open
Abstract
Described here are the synthesis, enzymology and some applications of a purine nucleoside analog (H) designed to have two tautomeric forms, one complementary to thymidine (T), the other complementary to cytidine (C). The performance of H is compared by various metrics to performances of other 'biversal' analogs that similarly rely on tautomerism to complement both pyrimidines. These include (i) the thermodynamic stability of duplexes that pair these biversals with various standard nucleotides, (ii) the ability of the biversals to support polymerase chain reaction (PCR), (iii) the ability of primers containing biversals to equally amplify targets having polymorphisms in the primer binding site, and (iv) the ability of ligation-based assays to exploit the biversals to detect medically relevant single nucleotide polymorphisms (SNPs) in sequences flanked by medically irrelevant polymorphisms. One advantage of H over the widely used inosine 'universal base' and 'mixed sequence' probes is seen in ligation-based assays to detect SNPs. The need to detect medically relevant SNPs within ambiguous sequences is especially important when probing RNA viruses, which rapidly mutate to create drug resistance, but also suffer neutral drift, the second obstructing simple methods to detect the first. Thus, H is being developed to detect variants of viruses that are rapidly mutating.
Collapse
Affiliation(s)
- Zunyi Yang
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Hyo-Joong Kim
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Jennifer T Le
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Chris McLendon
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Kevin M Bradley
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Myong-Sang Kim
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Daniel Hutter
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Ozlem Yaren
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| |
Collapse
|
5
|
New orthogonally trifunctionalized morpholine nucleosides. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Bag SS, Gogoi H. Design of "Click" Fluorescent Labeled 2'-deoxyuridines via C5-[4-(2-Propynyl(methyl)amino)]phenyl Acetylene as a Universal Linker: Synthesis, Photophysical Properties, and Interaction with BSA. J Org Chem 2018; 83:7606-7621. [PMID: 29877080 DOI: 10.1021/acs.joc.7b03097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microenvironment-sensitive fluorescent nucleosides present attractive advantages over single-emitting dyes for sensing inter-biomolecular interactions involving DNA. Herein, we report the rational design and synthesis of triazolyl push-pull fluorophore-labeled uridines via the intermediacy of C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker. The synthesized nucleosides showed interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) features. A few of them also exhibited dual-emitting characteristics evidencing our designing concept. The HOMO-LUMO distribution showed that the emissive states of these nucleosides were characterized with more significant electron redistribution between the C5-[4-(2-propynyl(methyl)amino)]phenyl triazolyl donor moiety and the aromatic chromophores linked to it, leading to modulated emission property. The solvent polarity sensitivity of these nucleosides was also tested. The synthesized triazolyl benzonitrile (10C), naphthyl (10E), and pyrenyl (10G) nucleosides were found to exhibit interesting ICT and dual (LE/ICT) emission properties. The dual-emitting pyrenyl nucleoside maintained a good ratiometric response in the BSA protein microenvironment, enabling the switch-on ratiometric sensing of BSA as the only protein biomolecule. Thus, it is expected that the new fluorescent nucleoside analogues would be useful in designing DNA probes for nucleic acid analysis or studying DNA-protein interactions via a drastic change in fluorescence response due to a change in micropolarity.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Hiranya Gogoi
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| |
Collapse
|
7
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
8
|
Röthlisberger P, Levi-Acobas F, Hollenstein M. New synthetic route to ethynyl-dUTP: A means to avoid formation of acetyl and chloro vinyl base-modified triphosphates that could poison SELEX experiments. Bioorg Med Chem Lett 2017; 27:897-900. [PMID: 28089700 DOI: 10.1016/j.bmcl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/10/2023]
Abstract
5-Ethynyl-2'-deoxyuridine is a common base-modified nucleoside analogue that has served in various applications including selection experiments for potent aptamers and in biosensing. The synthesis of the corresponding triphosphates involves a mild acidic deprotection step. Herein, we show that this deprotection leads to the formation of other nucleoside analogs which are easily converted to triphosphates. The modified nucleoside triphosphates are excellent substrates for numerous DNA polymerases under both primer extension and PCR conditions and could thus poison selection experiments by blocking sites that need to be further modified. The formation of these nucleoside analogs can be circumvented by application of a new synthetic route that is described herein.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
9
|
Guo X, Ingale SA, Yang H, He Y, Seela F. MercuryII-mediated base pairs in DNA: unexpected behavior in metal ion binding and duplex stability induced by 2′-deoxyuridine 5-substituents. Org Biomol Chem 2017; 15:870-883. [PMID: 28045181 DOI: 10.1039/c6ob02560a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA accepts small substituents at the 5-position of 2′-deoxyuridine residues within mercury ion mediated dU–HgII–dU base pairs, while triple bonds interact with mercury ions and those with space demanding aromatic side chains block metal ion mediated base pair formation.
Collapse
Affiliation(s)
- Xiurong Guo
- Precision Medicine Research Laboratory
- West China Hospital
- West China School of Medicine
- Sichuan University
- 610041 Chengdu
| | - Sachin A. Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology
- Center for Nanotechnology
- 48149 Münster
- Germany
- Laboratorium für Organische und Bioorganische Chemie
| | - Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology
- Center for Nanotechnology
- 48149 Münster
- Germany
- Laboratorium für Organische und Bioorganische Chemie
| | - Yang He
- Precision Medicine Research Laboratory
- West China Hospital
- West China School of Medicine
- Sichuan University
- 610041 Chengdu
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology
- Center for Nanotechnology
- 48149 Münster
- Germany
- Laboratorium für Organische und Bioorganische Chemie
| |
Collapse
|
10
|
Ingale SA, Seela F. 7-Deaza-2′-deoxyguanosine: Selective Nucleobase Halogenation, Positional Impact of Space-Occupying Substituents, and Stability of DNA with Parallel and Antiparallel Strand Orientation. J Org Chem 2016; 81:8331-42. [DOI: 10.1021/acs.joc.6b01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sachin A. Ingale
- Laboratory
of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory
of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Laboratorium
für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße
7, 49069 Osnabrück, Germany
| |
Collapse
|
11
|
Fatthalla MI, Pedersen EB. Unexpected Hydration of a Triple Bond During DNA Synthesis: Conjugating 3-(Pyren-1-ylethynyl)indole to DNA for Triplex Studies. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maha I. Fatthalla
- Department of Physics; Chemistry and Pharmacy University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
- Department of Chemistry; Faculty of Science; Helwan University; 11795 Ain Helwan, Cairo Egypt
| | - Erik B. Pedersen
- Department of Physics; Chemistry and Pharmacy University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| |
Collapse
|