1
|
Gayen P, Sar S, Ghorai P. Stereodivergent Synthesis of Spiroaminals via Chiral Bifunctional Hydrogen Bonding Organocatalysis. Angew Chem Int Ed Engl 2024; 63:e202404106. [PMID: 38563755 DOI: 10.1002/anie.202404106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spiroaminals represent novel structural motifs prevalent in diverse natural products and biologically active molecules. Achieving their enantioselective synthesis is a highly desirable and challenging task in synthetic endeavors due to their intricate molecular frameworks. Herein, we accomplished the first stereodivergent construction of spiroaminals using chiral bifunctional organocatalyzed intramolecular 1,2-addition followed by an oxa-Michael addition cascade in a high atom and step economical pathway. A proper modulation of the cinchona-derived squaramide catalysts efficiently provided access to all the possible stereoisomers with high yield, diastereoselectivity, and excellent enantioselectivity while displaying a broad substrate tolerance. Additionally, we validated the scalability of the reaction and demonstrated the synthesis of variable spiroaminal scaffolds, confirming the viability of our protocol.
Collapse
Affiliation(s)
- Prasenjit Gayen
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
2
|
Xie XQ, Li X, Liu PN. Enantioselective synthesis of spiro- N, O-ketals via iridium and Brønsted acid co-catalyzed asymmetric formal [4+2] cycloaddition. Chem Commun (Camb) 2024; 60:1448-1451. [PMID: 38213273 DOI: 10.1039/d3cc05923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We present an iridium and Brønsted acid co-catalyzed enantioselective formal [4+2] cycloaddition reaction of cyclic enamides with 2-(1-hydroxyallyl)phenols. This method yields a wide range of N-unsubstituted spiro-N,O-ketals, with good efficiency (up to 94%) and excellent enantioselectivities (most >95% ee). The protocol features easy scale-up and facile product derivatization.
Collapse
Affiliation(s)
- Xiang-Qi Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Shinde MH, Ramana CV. Facile synthesis of the spiro-pyridoindolone scaffold via a gold-catalysed intramolecular alkynol cyclisation/hydroindolylation. Org Biomol Chem 2022; 20:2086-2095. [PMID: 35188513 DOI: 10.1039/d1ob02483c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple approach for the synthesis of pyridoindolone scaffolds with a spiroannulated tetrahydrofuran ring is described. The overall process comprises intramolecular sequential gold-catalysed 5-endo-dig alkynol cycloisomerization and subsequent addition of indole C2 to the in situ generated oxocarbenium cation.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Li L, Zhang S, Deng X, Li G, Tang Z, Zhao G. Preparation and Application of α-Imino Ketones through One-Pot Tandem Reactions Based on Heyns Rearrangement. Org Lett 2021; 23:6819-6824. [PMID: 34406013 DOI: 10.1021/acs.orglett.1c02390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Imino ketone is a useful building block for the preparation of α-amino ketones and α-amino alcohols. However, its preparation has been seldomly seen. Herein, a metal-free and operationally simple strategy has been developed to generate α-imino ketones with high regioselectivity. Meanwhile, the method allowed for the preparation of various N,O-ketals with high regioselectivities and diastereoselectivities through cascade reactions in one pot.
Collapse
Affiliation(s)
- Ling Li
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shiqi Zhang
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science, Chengdu, Sichuan 610041, P.R. China
| | - Xiongfei Deng
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science, Chengdu, Sichuan 610041, P.R. China
| | - Guangxun Li
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo Tang
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science, Chengdu, Sichuan 610041, P.R. China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|
5
|
Praveen C. Cycloisomerization of π-Coupled Heteroatom Nucleophiles by Gold Catalysis: En Route to Regiochemically Defined Heterocycles. CHEM REC 2021; 21:1697-1737. [PMID: 34061426 DOI: 10.1002/tcr.202100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Since the dawn of millennium, catalytic gold chemistry is at the forefront to set off diverse organic reactions via unique activation of π-bonded molecules. Within this purview, cycloisomerization of heteroatom nucleophiles linked to a π-system is one of the well recognized chemistry for the construction of numerous heterocyclic cores. Though the rudimentary aspects of this transformation are reviewed by several groups in different timeline, a holistic view on regiochemistry of such reactions went largely overlooked. Hence, this account emphasizes the gold catalyzed regioselective cycloisomerization of structurally distinctive π-connected hetero-nucleophiles leading to different heterocycles documented in the last two decades. From an application perspective, this account also highlights those methodologies which find a role in the total synthesis of natural products. Wherever appropriate, mechanistic details and contributing factors for selectivity are also discussed.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| |
Collapse
|
6
|
Nishimura K, Hanzawa R, Sugai T, Fuwa H. Ruthenium-Catalyzed Intramolecular Double Hydrofunctionalization of Alkynes. Synthesis of Spirocyclic Hemiaminal Ethers and Their Lewis Acid-Mediated Cleavage/Nucleophilic Addition. J Org Chem 2021; 86:6674-6697. [PMID: 33861607 DOI: 10.1021/acs.joc.1c00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[RuCl2(p-cymene)]2/AgNO3-catalyzed intramolecular double hydrofunctionalization of internal alkynes having nitrogen and oxygen nucleophilic groups at appropriate positions provided a series of spirocyclic hemiaminal ether derivatives in good to excellent yields. The product spiro-hemiaminal ethers underwent Lewis acid-mediated chemoselective cleavage, and in situ-generated iminium/oxocarbenium ions could be trapped with nucleophiles to afford a range of nitrogen and oxygen heterocycles.
Collapse
Affiliation(s)
- Kazuma Nishimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ryohei Hanzawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomoya Sugai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
7
|
Alves NG, Alves AJS, Soares MIL, Pinho e Melo TMVD. Recent Advances in the Synthesis of Spiro‐β‐Lactams and Spiro‐δ‐Lactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nuno G. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Américo J. S. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Maria I. L. Soares
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | | |
Collapse
|
8
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
9
|
Shinde MH, Ramana CV. An Apparent Umpolung Reactivity of Indole through [Au]-Catalysed Cyclisation and Lewis-Acid-Mediated Allylation. Chemistry 2020; 26:17171-17175. [PMID: 32970893 DOI: 10.1002/chem.202003441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/07/2020] [Indexed: 11/10/2022]
Abstract
The sequential functionalization of indole C2 and C3 in an umpolung fashion was executed with a predesigned substrate and choice of reagents. The developed method comprises gold-catalysed alkynol cycloisomerisation/intramolecular addition of C2 of indole and subsequent BF3 ⋅OEt2 -mediated regioselective C3 allylation, resulting in the synthesis of the functionalized indoloisoquinolinone scaffold. The reaction involves 5-endo-alkynol cycloisomerisation and the dearomative addition of indole C2 to the intermediate oxocarbenium cation, which results in two equilibrating fused and spiropentacyclic intermediates, which upon treatment with allyl silane in the presence of BF3 ⋅OEt2 , undergo selective indole C3 allylation. Other nucleophiles, such as hydride, azide and indole, were also found to be compatible with this process.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110002, India
| |
Collapse
|
10
|
Affiliation(s)
- Ronald L. Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
11
|
Yamamoto K, Yoshikawa Y, Ohue M, Inuki S, Ohno H, Oishi S. Synthesis of Triazolo- and Oxadiazolopiperazines by Gold(I)-Catalyzed Domino Cyclization: Application to the Design of a Mitogen Activated Protein (MAP) Kinase Inhibitor. Org Lett 2018; 21:373-377. [DOI: 10.1021/acs.orglett.8b03500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koki Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Yoshikawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Wagner B, Belger K, Minkler S, Belting V, Krause N. Sustainable gold catalysis: synthesis of new spiroacetals. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractVarious [O,O]- and [N,O]-spiroacetals were synthesized by gold-catalyzed spirocyclization of suitable functionalized alkynes. Whereas simple spiroacetals with two heteroatoms were readily obtained by regioselective cyclization of acetylenic diols or aminoalcohols, hitherto unknown spirocyclic isoxazolidines and pyrazolidines bearing three heteroatoms were formed by three-component coupling of alkynols, aldehydes, and protected hydroxylamine or hydrazine derivatives. The sustainability of these spirocyclizations was improved by using recyclable gold catalysts in water or nanomicelles as reaction medium.
Collapse
Affiliation(s)
- Bernd Wagner
- 1Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Katrin Belger
- 1Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Stefan Minkler
- 1Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Volker Belting
- 1Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Norbert Krause
- 1Organic Chemistry, Dortmund University of Technology, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| |
Collapse
|
13
|
Zhang Z, Kumar RK, Li G, Wu D, Bi X. Synthesis of 4-Ynamides and Cyclization by the Vilsmeier Reagent to Dihydrofuran-2(3H)-ones. Org Lett 2015; 17:6190-3. [DOI: 10.1021/acs.orglett.5b03189] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhaocheng Zhang
- College
of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Rapolu Kiran Kumar
- Department
of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangzhi Li
- College
of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Dongmei Wu
- College
of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xihe Bi
- Department
of Chemistry, Northeast Normal University, Changchun 130024, China
- College
of Pharmacy, Jiamusi University, Jiamusi 154007, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Debrouwer W, Heugebaert TSA, Roman BI, Stevens CV. Homogeneous Gold-Catalyzed Cyclization Reactions of Alkynes withN- andS-Nucleophiles. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500520] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Dorel R, Echavarren AM. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem Rev 2015; 115:9028-72. [PMID: 25844920 PMCID: PMC4580024 DOI: 10.1021/cr500691k] [Citation(s) in RCA: 1328] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ruth Dorel
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical
Research of Catalonia (ICIQ), Av. Països
Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|