1
|
Wei R, Rao Y, Venkatesh A, Emsley L. Solid Effect Dynamic Nuclear Polarization Enhancement of >500 at 9.4 T. J Phys Chem Lett 2024; 15:12408-12415. [PMID: 39656937 DOI: 10.1021/acs.jpclett.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Efficient polarizing agents for dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) NMR spectroscopy are of high current interest due to the potential to significantly boost NMR sensitivity. While most efforts have centered on cross-effect (CE) or Overhauser effect (OE) mechanisms, yielding enhancement factors up to ∼300 at 9.4 T, radicals yielding solid effect (SE) DNP have seen less development. Here we model the comparative performance of OE and SE mechanisms and then measure 1H enhancement factors up to 500 from 1,3-bisdiphenylene-2-phenylallyl (BDPA) in an ortho-terphenyl (OTP) matrix at 9.4 T, 100 K, achieved via increased microwave power across the sample volume. The measured SE and OE performances are in good agreement with the predictions. We note that both the experimental and theoretical analyses indicate that SE DNP remains saturation limited, particularly at elevated temperatures, and we envisage that further improvements in microwave power will further increase SE DNP enhancement factors.
Collapse
Affiliation(s)
- Ran Wei
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Radaelli A, Yoshihara HAI, Nonaka H, Sando S, Ardenkjaer-Larsen JH, Gruetter R, Capozzi A. 13C Dynamic Nuclear Polarization using SA-BDPA at 6.7 T and 1.1 K: Coexistence of Pure Thermal Mixing and Well-Resolved Solid Effect. J Phys Chem Lett 2020; 11:6873-6879. [PMID: 32787205 DOI: 10.1021/acs.jpclett.0c01473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
SA-BDPA is a water-soluble, narrow-line width radical previously used for dynamic nuclear polarization (DNP) signal enhancement in solid-state magic angle spinning NMR spectroscopy. Here, we report the first study using SA-BDPA under dissolution DNP conditions (6.7 T and 1.15 K). Longitudinal-detected (LOD)-electron spin resonance (ESR) and 13C DNP measurements were performed on samples containing 8.4 M [13C]urea dissolved in 50:50 water:glycerol (v/v) doped with either 60 or 120 mM SA-BDPA. Two distinct DNP mechanisms, both "pure" thermal mixing and a well-resolved solid effect could clearly be identified. The radical's ESR line width (30-40 MHz), broadened predominantly by dipolar coupling, excluded any contribution from the cross effect. Microwave frequency modulation increased the enhancement by DNP at the lower radical concentration but not at the higher radical concentration. These results are compared to data acquired with trityl radical AH111501, highlighting the unusual 13C DNP properties of SA-BDPA.
Collapse
Affiliation(s)
- Alice Radaelli
- Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland 1015
| | - Hikari A I Yoshihara
- Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland 1015
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan 113-8656
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo, Japan 113-8656
| | | | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland 1015
| | - Andrea Capozzi
- Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland 1015
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark 2800
| |
Collapse
|
3
|
Mandal S, Sigurdsson ST. On the Limited Stability of BDPA Radicals. Chemistry 2020; 26:7486-7491. [PMID: 32396245 DOI: 10.1002/chem.202001084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 11/08/2022]
Abstract
1,3-Bis(diphenylene)-2-phenylallyl (BDPA)-based radicals are of interest as polarizing agents for dynamic nuclear polarization (DNP). For this purpose, a BDPA-nitroxide biradical, employing a phosphodiester linkage, was synthesized. Contrary to what is commonly assumed, BDPA-derived radicals were observed to have limited stability. Hence, the effects of various factors on the stability of BDPA radicals were investigated. Solvent polarity was found to play a significant role on degradation; a polar BDPA radical was observed to degrade faster in a non-polar solvent, whereas non-polar radicals were more unstable in polar solvents. The rate of decomposition was found to increase non-linearly with increasing radical concentration; a 2-fold increase in concentration led to a 3-fold increase in the rate of degradation. Collectively, these results indicate that the dimerization is a significant degradation pathway for BDPA radicals and indeed, a dimer of one BDPA radical was detected by mass spectrometry.
Collapse
Affiliation(s)
- Sucharita Mandal
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
| |
Collapse
|
4
|
Tateishi K, Negoro M, Nonaka H, Kagawa A, Sando S, Wada S, Kitagawa M, Uesaka T. Dynamic nuclear polarization with photo-excited triplet electrons using 6,13-diphenylpentacene. Phys Chem Chem Phys 2019; 21:19737-19741. [PMID: 31498341 DOI: 10.1039/c9cp00977a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dynamic nuclear polarization with photo-excited triplet electrons (Triplet-DNP) is demonstrated using 6,13-diphenylpentacene (DPPentacene). DPPentacene is soluble in various organic solvents, while pentacene, which is used in most of the triplet-DNP experiments, has limited solubility. An enhancement factor of 81 is obtained for 1H spins in the glass of ethanol-d6 : water = 80 : 20 (w/w) doped with 0.1 mM DPPentacene at 90 K in 0.67 T.
Collapse
|
5
|
Khattri RB, Sirusi AA, Suh EH, Kovacs Z, Merritt ME. The influence of Ho 3+ doping on 13C DNP in the presence of BDPA. Phys Chem Chem Phys 2019; 21:18629-18635. [PMID: 31414686 DOI: 10.1039/c9cp03717a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polarization transfer from unpaired electron radicals to nuclear spins at low-temperature is achieved using microwave irradiation by a process broadly termed dynamic nuclear polarization (DNP). The resulting signal enhancement can easily exceed factors of 104 when paired with cryogenic cooling of the sample. Dissolution-DNP couples low temperature polarization methods with a rapid dissolution step, resulting in a highly polarized solution that can be used for metabolically sensitive magnetic resonance imaging (MRI). Hyperpolarized [1-13C]pyruvate is a powerful metabolic imaging agent for investigation of in vitro and in vivo cellular metabolism by means of NMR spectroscopy and MRI. Radicals (trityl OX063 and BDPA) with narrower EPR linewidths typically produce higher nuclear polarizations when carbon-13 is the target nucleus. Increased solid-state polarization is observed when narrow line radicals are doped with lanthanide ions such as Gd3+, Ho3+, Dy3+, and Tb3+. Earlier results have demonstrated an incongruence between DNP experiments with trityl and BDPA, where the optimal concentrations for polarization transfer are disparate despite similar electron spin resonance linewidths. Here, the effects of Ho-DOTA on the solid-state polarization of [1-13C]pyruvic acid were compared for 3.35 T (1.4 K) and 5 T (1.2 K) systems using BDPA as a radical. Multiple concentrations of BDPA were doped with variable concentrations of Ho-DOTA (0, 0.2, 0.5, 1, and 2 mM), and dissolved in 1 : 1 (v/v) of [1-13C] pyruvic acid/sulfolane mixture. Our results reveal that addition of small amounts of Ho-DOTA in the sample preparation increases the solid-state polarization for [1-13C] pyruvic acid, with the optimum Ho-DOTA concentration of 0.2 mM. Without Ho-DOTA doping, the optimum BDPA concentration found for 3.35 T (1.4 K) is 40 mM, and for 5 T (1.2 K) system it is about 60 mM. In both systems, inclusion of Ho-DOTA in the 13C DNP sample leads to a change in the breadth (ΔDNP) of the extrema between the P(+) and P(-) frequencies in microwave spectra. At no combination of BDPA and Ho3+ did polarizations reach those achievable with trityl. Simplified analysis of increased polarization as a function of decreased electron T1e used to explain results in trityl are insufficient to describe DNP with BDPA.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, USA.
| | | | | | | | | |
Collapse
|
6
|
Niedbalski P, Kiswandhi A, Parish C, Wang Q, Khashami F, Lumata L. NMR Spectroscopy Unchained: Attaining the Highest Signal Enhancements in Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:5481-5489. [PMID: 30179503 DOI: 10.1021/acs.jpclett.8b01687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method is one of the most successful methods for alleviating the inherently low Boltzmann-dictated sensitivity in nuclear magnetic resonance (NMR) spectroscopy. This emerging technology has already begun to positively impact chemical and metabolic research by providing the much-needed enhancement of the liquid-state NMR signals of insensitive nuclei such as 13C by several thousand-fold. In this Perspective, we present our viewpoints regarding the key elements needed to maximize the NMR signal enhancements in dissolution DNP, from the very core of the DNP process at cryogenic temperatures, DNP instrumental conditions, and chemical tuning in sample preparation to current developments in minimizing hyperpolarization losses during the dissolution transfer process. The optimization steps discussed herein could potentially provide important experimental and theoretical considerations in harnessing the best possible sensitivity gains in NMR spectroscopy as afforded by optimized dissolution DNP technology.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Andhika Kiswandhi
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Christopher Parish
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Qing Wang
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Fatemeh Khashami
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Lloyd Lumata
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| |
Collapse
|
7
|
Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules. SENSORS 2018; 18:s18020600. [PMID: 29462891 PMCID: PMC5856118 DOI: 10.3390/s18020600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/17/2022]
Abstract
pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P) with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.
Collapse
|
8
|
Hundshammer C, Düwel S, Schilling F. Imaging of Extracellular pH Using Hyperpolarized Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201700017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| |
Collapse
|
9
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Pinto LF, Marín-Montesinos I, Lloveras V, Muñoz-Gómez JL, Pons M, Veciana J, Vidal-Gancedo J. NMR signal enhancement of >50 000 times in fast dissolution dynamic nuclear polarization. Chem Commun (Camb) 2017; 53:3757-3760. [DOI: 10.1039/c7cc00635g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mixed biradical polarizing agent (BDPAesterTEMPO) showing one of the largest NMR signal enhancements to be observed so far in fast dissolution Dynamic Nuclear Polarization (dDNP).
Collapse
Affiliation(s)
- L. F. Pinto
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Bellaterra
- Spain
- CIBER-BBN
- Barcelona
| | - I. Marín-Montesinos
- Biomolecular NMR laboratory
- Inorganic and Organic Chemistry Department
- University of Barcelona
- Barcelona
- Spain
| | - V. Lloveras
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Bellaterra
- Spain
- CIBER-BBN
- Barcelona
| | - J. L. Muñoz-Gómez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Bellaterra
- Spain
- CIBER-BBN
- Barcelona
| | - M. Pons
- Biomolecular NMR laboratory
- Inorganic and Organic Chemistry Department
- University of Barcelona
- Barcelona
- Spain
| | - J. Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Bellaterra
- Spain
- CIBER-BBN
- Barcelona
| | - J. Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Bellaterra
- Spain
- CIBER-BBN
- Barcelona
| |
Collapse
|
11
|
Jähnig F, Kwiatkowski G, Ernst M. Conceptual and instrumental progress in dissolution DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:22-29. [PMID: 26920827 DOI: 10.1016/j.jmr.2015.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 05/15/2023]
Abstract
We discuss conceptual and instrumental progress in dissolution DNP since its introduction in 2003. In our view there are three critical steps in the dissolution DNP process: (i) The achievable polarization level in a sample. (ii) The time required to build up the polarization. (iii) The transfer of the sample to the measurement system with minimum loss of polarization. In this review we describe in detail these steps and the different methodological and instrumental implementations, which have been proposed to optimize them.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland; Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
12
|
Muñoz-Gómez JL, Monteagudo E, Lloveras V, Parella T, Veciana J, Vidal-Gancedo J. Optimized polarization build-up times in dissolution DNP-NMR using a benzyl amino derivative of BDPA. RSC Adv 2016. [DOI: 10.1039/c6ra00635c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A BAm-BDPA radical has proved to be a quick and efficient polarizing agent, showing optimum 13C NMR signal enhancements per polarization time unit.
Collapse
Affiliation(s)
- J. L. Muñoz-Gómez
- Institut de Ciència de Materials de Barcelona
- (ICMAB-CSIC) Campus Universitari de Bellaterra
- E-08193 Cerdanyola del Vallès
- Spain
- Networking Research Center on Bioengineering
| | - E. Monteagudo
- Servei de Ressonància Magnètica Nuclear
- Facultat de Ciències i Biociències
- Universitat Autònoma de Barcelona
- E-08193 Bellaterra
- Spain
| | - V. Lloveras
- Institut de Ciència de Materials de Barcelona
- (ICMAB-CSIC) Campus Universitari de Bellaterra
- E-08193 Cerdanyola del Vallès
- Spain
- Networking Research Center on Bioengineering
| | - T. Parella
- Servei de Ressonància Magnètica Nuclear
- Facultat de Ciències i Biociències
- Universitat Autònoma de Barcelona
- E-08193 Bellaterra
- Spain
| | - J. Veciana
- Institut de Ciència de Materials de Barcelona
- (ICMAB-CSIC) Campus Universitari de Bellaterra
- E-08193 Cerdanyola del Vallès
- Spain
- Networking Research Center on Bioengineering
| | - J. Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona
- (ICMAB-CSIC) Campus Universitari de Bellaterra
- E-08193 Cerdanyola del Vallès
- Spain
- Networking Research Center on Bioengineering
| |
Collapse
|
13
|
Yoshihara HAI, Can E, Karlsson M, Lerche MH, Schwitter J, Comment A. High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid. Phys Chem Chem Phys 2016; 18:12409-13. [DOI: 10.1039/c6cp00589f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Greater than 60% solution-state polarization of [1-13C]pyruvic acid polarized at 7 T and 1.0 K can be measured after rapid transfer to an MRI scanner magnet.
Collapse
Affiliation(s)
- Hikari A. I. Yoshihara
- Institute of Physics of Biological Systems
- Swiss Federal Institute of Technology
- Lausanne, Switzerland
| | - Emine Can
- Institute of Physics of Biological Systems
- Swiss Federal Institute of Technology
- Lausanne, Switzerland
| | - Magnus Karlsson
- Albeda Research
- ApS
- Copenhagen, Denmark
- Department of Electrical Engineering
- Technical University of Denmark
| | - Mathilde H. Lerche
- Albeda Research
- ApS
- Copenhagen, Denmark
- Department of Electrical Engineering
- Technical University of Denmark
| | - Juerg Schwitter
- Division of Cardiology and Cardiac MR Center
- Lausanne University Hospital
- Lausanne, Switzerland
| | - Arnaud Comment
- Institute of Physics of Biological Systems
- Swiss Federal Institute of Technology
- Lausanne, Switzerland
| |
Collapse
|