1
|
Sun Y, Neary WJ, Huang X, Kouznetsova TB, Ouchi T, Kevlishvili I, Wang K, Chen Y, Kulik HJ, Craig SL, Moore JS. A Thermally Stable SO 2-Releasing Mechanophore: Facile Activation, Single-Event Spectroscopy, and Molecular Dynamic Simulations. J Am Chem Soc 2024; 146:10943-10952. [PMID: 38581383 DOI: 10.1021/jacs.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
He P, Ren X, Zhang Y, Tang B, Xiao C. Recent advances in sulfur dioxide releasing nanoplatforms for cancer therapy. Acta Biomater 2024; 174:91-103. [PMID: 38092251 DOI: 10.1016/j.actbio.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Sulfur dioxide (SO2), long considered to be a harmful atmospheric pollutant, has recently been posited as the fourth gasotransmitter, as it is produced endogenously in mammals and has important pathophysiological effects. The field of tumor therapy has witnessed a paradigm shift with the emergence of SO2-based gas therapy. This has been possible because SO2 is a potent glutathione consumer that can promote the production of reactive oxygen species, eventually leading to oxidative-stress-induced cancer cell death. Nevertheless, this therapeutic gas cannot be directly administrated in gaseous form. Thus, various nano formulations incorporating SO2 donors or prodrugs capable of storing and releasing SO2 have been developed in an attempt to achieve active/passive intratumoral accumulation and SO2 release in the tumor microenvironment. In this review article, the advances over the past decade in nanoplatforms incorporating sulfur SO2 prodrugs to provide controlled release of SO2 for cancer therapy are summarized. We first describe the synthesis of polypeptide SO2 prodrugs to overcome multiple drug resistance that was pioneered by our group, followed by other macromolecular SO2 prodrug structures that self-assemble into nanoparticles for tumor therapy. Second, we describe nanoplatforms composed of various small-molecule SO2 donors with endogenous or exogenous stimuli responsiveness, including thiol activated, acid-sensitive, and ultraviolet or near-infrared light-responsive SO2 donors, which have been used for tumor inhibition. Combinations of SO2 gas therapy with photodynamic therapy, chemotherapy, photothermal therapy, sonodynamic therapy, and nanocatalytic tumor therapy are also presented. Finally, we discuss the current limitations and challenges and the future outlook for SO2-based gas therapy. STATEMENT OF SIGNIFICANCE: Gas therapy is attracting increasing attention in the scientific community because it is a highly promising strategy against cancer owing to its inherent biosafety and avoidance of drug resistance. Sulfur dioxide (SO2) is recently found to be produced endogenously in mammals with important pathophysiological effects. This review summarizes recent advances in SO2 releasing nanosystems for cancer therapy, including polymeric prodrugs, endogenous or exogenous stimulus-activated SO2 donors delivered by nanoplatform and combination therapy strategies.
Collapse
Affiliation(s)
- Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Xiaoyue Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
3
|
Zhuang JQ, Guo YQ, Deng CL, Zhang XG, Tu HY. TBAI-Mediated Cyclization and Methylsulfonylation of Propargylic Amides with Dimethyl Sulfite. J Org Chem 2023. [PMID: 37467194 DOI: 10.1021/acs.joc.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A tetramethylammonium iodide (TBAI)-mediated cyclization and methylsulfonylation of propargylic amides enabled by dimethyl sulfite as a SO2 surrogate and methyl source have been developed. The transition metal-free and oxidant-free reaction provides a practical and efficient approach for the selective synthesis of methylsulfonyl oxazoles in moderate to excellent yields with good functional group compatibility.
Collapse
Affiliation(s)
- Jia-Qing Zhuang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ying-Qiong Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chen-Liang Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Zhang Y, Li H, Yang X, Zhou P, Shu C. Recent advances in the synthesis of cyclic sulfinic acid derivatives (sultines and cyclic sulfinamides). Chem Commun (Camb) 2023; 59:6272-6285. [PMID: 37140259 DOI: 10.1039/d3cc01238g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The chemistry of cyclic sulfinic acid derivatives (sultines and cyclic sulfinamides) was underdeveloped for a long time due to their inaccessibility. Considering the importance of cyclic sulfinate esters and amides in the fields of chemistry, pharmaceutical science, and material science, synthesis strategies involving cyclic sulfinic acid derivatives have been paid more attention in recent years, and have been widely used in the synthesis of sulfur-containing compounds such as sulfoxides, sulfones, sulfinates and thioethers. Despite the impressive improvements that have been made in last twenty years with the new strategies, to date, no reviews have been published, to the best of our knowledge, dealing with the preparation of cyclic sulfinic acid derivatives. This review summarizes the latest advances in the development of new synthesis methods to access cyclic sulfinic acid derivatives in the last two decades. The synthetic strategies are reviewed by highlighting their product diversity, selectivity and applicability, and the mechanistic rationale is presented where possible. We wish to bring readers a comprehensive understanding of the state-of-play of cyclic sulfinic acid derivative formation and make a contribution to future research.
Collapse
Affiliation(s)
- Yongxin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Helian Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xiaoxiao Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Pan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Chao Shu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
- HICI Digital Power Technology Co., Ltd, Wuhan, Hubei, China
| |
Collapse
|
5
|
Yun B, Gu Z, Liu Z, Han Y, Sun Q, Li Z. Reducing Chemo-/Radioresistance to Boost the Therapeutic Efficacy against Temozolomide-Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38617-38630. [PMID: 35974468 DOI: 10.1021/acsami.2c12348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemo-/radioresistance is the most important reason for the failure of glioblastoma (GBM) treatment. Reversing the chemo-/radioresistance of GBM for boosting therapeutic efficacy is very challenging. Herein, we report a significant decrease in the chemo-/radioresistance of GBM by the in situ generation of SO2 within a tumor, which was released on demand from the prodrug 5-amino-1,3-dihydrobenzo[c]thiophene 2,2-dioxide (ATD) loaded on rare-earth-based scintillator nanoparticles (i.e., NaYF4:Ce@NaLuF4:Nd@ATD@DSPE-PEG5000, ScNPs) under X-ray irradiation. Our novel X-ray-responsive ScNPs efficiently converted highly penetrating X-rays into ultraviolet rays for controlling the decomposition of ATD to generate SO2, which effectively damaged the mitochondria of temozolomide-resistant U87 cells to lower the production of ATP and inhibit P-glycoprotein (P-gp) expression to reduce drug efflux. Meanwhile, the O6-methylguanine-DNA methyltransferase (MGMT) of drug-resistant tumor cells was also reduced to prevent the repair of damaged DNA and enhance cell apoptosis and the efficacy of chemo-/radiotherapy. The tumor growth was obviously suppressed, and the mice survived significantly longer than untreated temozolomide-resistant GBM-bearing mice. Our work demonstrates the potential of SO2 in reducing chemo-/radioresistance to improve the therapeutic effect against resistant tumors if it can be well controlled and in situ generated in tumor cells. It also provides insights into the rational design of stimuli-responsive drug delivery systems for the controlled release of drugs.
Collapse
Affiliation(s)
- Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhengpeng Gu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Liu Z, Yun B, Han Y, Jiang Z, Zhu H, Ren F, Li Z. Dye-Sensitized Rare Earth Nanoparticles with Up/Down Conversion Luminescence for On-Demand Gas Therapy of Glioblastoma Guided by NIR-II Fluorescence Imaging. Adv Healthc Mater 2022; 11:e2102042. [PMID: 34787378 DOI: 10.1002/adhm.202102042] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/06/2023]
Abstract
As the primary malignant tumor in the brain, glioblastoma exhibits a high mortality due to the challenges for complete treatment by conventional therapeutic methods. It is of great importance to develop innovative therapeutic agents and methods for treatment of glioblastoma. In this work, the imaging and therapy of glioblastoma are reported by using dye sensitized core-shell NaYF4 :Yb/Tm@NaYF4 :Nd nanoparticles with strong up/down-conversion luminescence, of which the ultraviolet up-conversion emissions at 348 and 365 nm are significantly enhanced by nearly 28 times and used to control the release of SO2 from 5-Amino-1,3-dihydrobenzo[c]thiophene 2,2-dioxide prodrug for gas therapy, and the second near-infrared (NIR-II) down conversion emission at 1340 nm is increased five times and applied for imaging. It is revealed that the released SO2 molecules not only cause oxidative stress damage of tumor cells, but also induce their pro-death autophagy by down-regulating the expression of p62 and up-regulating the ratio of LC3-II/LC3-I, ultimately inhibiting tumor growth. The work demonstrates the great potential of rare earth nano-platform with functions of NIR-II imaging and photo-controlled gas therapy in the diagnosis and treatment of orthotopic glioblastoma.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Radiation Protection Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 China
| |
Collapse
|
7
|
Corfield PWR. [Sulfonyl-bis-(bromo-methyl-ene)]di-benzene. IUCRDATA 2022; 7:x211351. [PMID: 36337089 PMCID: PMC9028549 DOI: 10.1107/s2414314621013511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
The title compound, C14H12Br2O2S, crystallizes as the meso isomer of a diastereoisomeric pair. This structure determination was key to determining that the 1,3 elimination of bromine by tri-phenyl-phosphine occurs with inversion of the configuration at each of the two chiral carbon atoms. In the crystal, the molecules are linked by weak C-H⋯O and C-H⋯Br hydrogen bonds.
Collapse
Affiliation(s)
- Peter W. R. Corfield
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
| |
Collapse
|
8
|
Xin YH, Guo YQ, Zhang XG, Deng CL. Palladium-Catalyzed Methylsulfonylation of Alkyl Halides Using Dimethyl Sulfite as SO 2 Surrogate and Methyl Source. J Org Chem 2021; 86:17496-17503. [PMID: 34747609 DOI: 10.1021/acs.joc.1c02188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel and efficient method for the synthesis of methyl sulfone derivatives via palladium-catalyzed methylsulfonylation of alkyl halides with dimethyl sulfite has been described. A variety of aryl and alkyl iodides underwent the sulfonylation smoothly to furnish methyl sulfites in moderate to excellent yields.
Collapse
Affiliation(s)
- Yan-Hua Xin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ying-Qiong Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| | - Chen-Liang Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
9
|
Skov AB, Folkmann LM, Boguslavskiy AE, Röder A, Lausten R, Stolow A, Johnson MS, Pittelkow M, Nielsen OJ, Sølling TI, Hansen T. The Sulfolene Protecting Group: Observation of a Direct Photoinitiated Cheletropic Ring Opening. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anders B. Skov
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Linnea M. Folkmann
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Andrey E. Boguslavskiy
- Joint Centre for Extreme Photonics National Research Council and University of Ottawa Ottawa ON, K1A 0R6 Canada
- Department of Physics University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON, K1N 6N5 Canada
- Department of Chemistry University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
- National Research Council Canada 100 Sussex Drive Ottawa ON K1N 5A2 Canada
| | - Anja Röder
- Joint Centre for Extreme Photonics National Research Council and University of Ottawa Ottawa ON, K1A 0R6 Canada
- Department of Chemistry University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Rune Lausten
- National Research Council Canada 100 Sussex Drive Ottawa ON K1N 5A2 Canada
| | - Albert Stolow
- Joint Centre for Extreme Photonics National Research Council and University of Ottawa Ottawa ON, K1A 0R6 Canada
- Department of Physics University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON, K1N 6N5 Canada
- Department of Chemistry University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
- National Research Council Canada 100 Sussex Drive Ottawa ON K1N 5A2 Canada
| | - Matthew S. Johnson
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Michael Pittelkow
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Ole John Nielsen
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Theis I. Sølling
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
- King Fahd University of Petroleum and Minerals Bldg. 15, Rm. 6124 Dhahran 31261, Kingdom of Saudi Arabia
| | - Thorsten Hansen
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
10
|
Abstract
Sulfur dioxide (SO2) was previously known as a harmful gas in air pollution. Recently, it was reported that SO2 can be endogenously generated in cardiovascular tissues. Many studies have revealed that endogenous SO2 has important physiological and pathophysiological significance and pharmacological potential. As a novel gasotransmitter, SO2 has important regulatory effects on the heart. It has a dose-dependent negative inotropic effect on cardiac function, in which L-type calcium channels are involved. SO2 can also attenuate myocardial injury caused by various harmful stimuli and play an important role in myocardial ischemia-reperfusion injury and myocardial hypertrophy. These effects are thought to be linked to its ability to reduce inflammation and as an antioxidant. In addition, SO2 regulates cardiomyocyte apoptosis and autophagy. Therefore, endogenous SO2 plays an important role in maintaining cardiovascular system homeostasis. In the present review, the literature concerning the metabolism of endogenous SO2, its cardiac toxicological effects and physiological regulatory effects, mechanisms for SO2-mediated myocardial protection and its pharmacological applications are summarized and discussed.
Collapse
|
11
|
Yu B, Yuan Z, Yang X, Wang B. Prodrugs of Persulfides, Sulfur Dioxide, and Carbon Disulfide: Important Tools for Studying Sulfur Signaling at Various Oxidation States. Antioxid Redox Signal 2020; 33:1046-1059. [PMID: 32041416 DOI: 10.1089/ars.2019.7880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Bioactive sulfur species such as hydrogen sulfide (H2S), persulfide species (R-SnSH, n ≥ 1), hydrogen polysulfide (H2Sn, n ≥ 2), sulfur dioxide (SO2), and carbon disulfide (CS2) participate in various physiological and/or pathological pathways such as vasodilation, apoptosis, inflammation, and energy metabolism regulation. The oxidation state of the individual sulfur species endows them unique biological activities. Recent Advances: There have been great strides made in achieving molecular understanding of the sulfur-signaling processes. Critical Issues: The development of various chemical tools that deliver reactive sulfur species in a controllable manner has played an important role in understanding the different roles of various sulfur species. In this review, we focus on three types of sulfur species, including persulfide, SO2, and CS2. Starting with a brief introduction of their physiological functions, we will then assess the various drug delivery strategies to generate persulfide species, SO2, and CS2 as research tools and potentially as therapeutic agents. Future Directions: Development of donors of various sulfur species that respond to distinct stimulus is critical for this field. Another key to the long-term success of this field is the identification of an area of unmet medical need that can be addressed with these sulfur species.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Zhengnan Yuan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Enhanced Bax upregulating in mitochondria for deep tumor therapy based on SO2 prodrug loaded Au–Ag hollow nanotriangles. Biomaterials 2020; 250:120076. [DOI: 10.1016/j.biomaterials.2020.120076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
|
13
|
Malwal SR, Pardeshi KA, Chakrapani H. Synthesis of Cyclic Sulfite Diesters and their Evaluation as Sulfur Dioxide (SO 2 ) Donors. Chembiochem 2020; 21:1201-1205. [PMID: 31709695 DOI: 10.1002/cbic.201900614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/10/2019] [Indexed: 12/22/2022]
Abstract
Although sulfur dioxide (SO2 ) finds widespread use in the food industry as its hydrated sulfite form, a number of aspects of SO2 biology remain to be completely understood. Of the tools available for intracellular enhancement of SO2 levels, most suffer from poor cell permeability and a lack of control over SO2 release. We report 1,2-cyclic sulfite diesters as a new class of reliable SO2 donors that dissociate in buffer through nucleophilic displacement to produce SO2 with tunable release profiles. We provide data in support of the suitability of these SO2 donors to enhance intracellular SO2 levels more efficiently than sodium bisulfite, the most commonly used SO2 donor for cellular studies.
Collapse
Affiliation(s)
- Satish R Malwal
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India.,Present address: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kundansingh A Pardeshi
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| |
Collapse
|
14
|
Liu Y, Wu Y, Zhang D, Xi Y, Yu S, Zhong H, He K, Li D, Wei W, Cao Y, Gan N. A BODIPY‐Hemicyanine‐Based Water‐Soluble Dual‐Color Fluorescence Probe for Colorimetric Monitoring of Intracellular Endogenous Sulfur Dioxide and Bioimaging Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201904900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Liu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Yong‐Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Dailiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University Changsha 410082 China
| | - Yang Xi
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of MedicineNingbo University, Ningbo Zhejiang 315211 China
| | - Shengrong Yu
- School of Chemistry & Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongmei Zhong
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Dian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Wen‐Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| |
Collapse
|
15
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
16
|
Thapa P, Arnquist I, Byrnes N, Denisenko AA, Foss FW, Jones BJP, McDonald AD, Nygren DR, Woodruff K. Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Sci Rep 2019; 9:15097. [PMID: 31641206 PMCID: PMC6805857 DOI: 10.1038/s41598-019-49283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/22/2019] [Indexed: 11/08/2022] Open
Abstract
The nature of the neutrino is one of the major open questions in experimental nuclear and particle physics. The most sensitive known method to establish the Majorana nature of the neutrino is detection of the ultra-rare process of neutrinoless double beta decay. However, identification of one or a handful of decay events within a large mass of candidate isotope, without obfuscation by backgrounds is a formidable experimental challenge. One hypothetical method for achieving ultra- low-background neutrinoless double beta decay sensitivity is the detection of single 136Ba ions produced in the decay of 136Xe ("barium tagging"). To implement such a method, a single-ion-sensitive barium detector must be developed and demonstrated in bulk liquid or dry gaseous xenon. This paper reports on the development of two families of dry-phase barium chemosensor molecules for use in high pressure xenon gas detectors, synthesized specifically for this purpose. One particularly promising candidate, an anthracene substituted aza-18-crown-6 ether, is shown to respond in the dry phase with almost no intrinsic background from the unchelated state, and to be amenable to barium sensing through fluorescence microscopy. This interdisciplinary advance, paired with earlier work demonstrating sensitivity to single barium ions in solution, opens a new path toward single ion detection in high pressure xenon gas.
Collapse
Affiliation(s)
- P Thapa
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA.
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - I Arnquist
- Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - N Byrnes
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - A A Denisenko
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - F W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - B J P Jones
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - A D McDonald
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - D R Nygren
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - K Woodruff
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
17
|
Hoffmann H, Mukanov D, Ganschow M, Rominger F, Freudenberg J, Bunz UHF. 2,3-Dihalo- and 2,3,6,7-Tetrahaloanthracenes by Vollhardt Trimerization. J Org Chem 2019; 84:9826-9834. [PMID: 31309840 DOI: 10.1021/acs.joc.9b01567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We efficiently synthesized otherwise difficult to obtain 2,3- and 2,3,6,7-halogenated anthracenes with diverse east/west substituents. Key steps involve the (i) Vollhardt cyclization of bis(propargyl)benzenes with bis(trimethylsilyl)acetylene, (ii) halo-desilylation introducing chlorine, bromine, or iodine substituents, and (iii) dehydrogenation. Pd catalysis allows selective functionalization at the anthracenes' east/west positions. A tetrahydropentacene is synthesized and derivatized via the same strategy, employing tetrapropargylbenzene.
Collapse
Affiliation(s)
- Hendrik Hoffmann
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Diana Mukanov
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Michael Ganschow
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Frank Rominger
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany.,InnovationLab , Speyerer Str. 4 , 69115 Heidelberg , Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany.,Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| |
Collapse
|
18
|
Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B. Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem Soc Rev 2019; 48:1077-1094. [PMID: 30724944 DOI: 10.1039/c8cs00395e] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review summarizes recent developments in using bioorthogonal chemistry in prodrug design for the delivery of traditional small molecule- and gasotransmitter-based therapeutics.
Collapse
Affiliation(s)
- Xingyue Ji
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
19
|
Venkatesh Y, Kiran KS, Shah SS, Chaudhuri A, Dey S, Singh NDP. One- and two-photon responsive sulfur dioxide (SO2) donors: a combinatorial drug delivery for improved antibiotic therapy. Org Biomol Chem 2019; 17:2640-2645. [DOI: 10.1039/c9ob00090a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Light-activated sulfur dioxide donors have been developed and explored their applicability for combinatorial antibiotic therapy with self-monitoring ability.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Kumari Shanti Kiran
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Sk. Sheriff Shah
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Amrita Chaudhuri
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Satyahari Dey
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| |
Collapse
|
20
|
Wang W, Wang B. SO 2 Donors and Prodrugs, and Their Possible Applications: A Review. Front Chem 2018; 6:559. [PMID: 30505833 PMCID: PMC6250732 DOI: 10.3389/fchem.2018.00559] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
SO2 is widely recognized as an air pollutant and is a known cause of acid rain. At a sufficiently high level, it also causes respiratory diseases. A much lesser known side of SO2 is its endogenous nature and possible physiological roles. There is mounting evidence that SO2 is produced during normal cellular metabolism and may possibly function as a signaling molecule in normal physiology. The latter aspect is still at the stage of being carefully examined as to the validity of classifying SO2 as a gasotransmitter with endogenous signaling roles. One difficulty in studying the biological and pharmacological roles of SO2 is the lack of adequate tools for its controllable and precise delivery. Traditional methods of using SO2 gas or mixed sulfite salts do not meet research need for several reasons. Therefore, there has been increasing attention on the need of developing SO2 donors or prodrugs that can be used as tools for the elucidation of SO2's physiological roles, pharmacological effects, and possible mechanism(s) of action. In this review, we aim to review basic sulfur chemistry in the context of sulfur signaling and various chemical strategies used for designing SO2 donors. We will also discuss potential pharmacological applications of SO2 donors, lay out desirable features for such donors and possibly prodrugs, analyze existing problems, and give our thoughts on research needs.
Collapse
Affiliation(s)
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
21
|
Bora P, Chauhan P, Pardeshi KA, Chakrapani H. Small molecule generators of biologically reactive sulfur species. RSC Adv 2018; 8:27359-27374. [PMID: 35540007 PMCID: PMC9083908 DOI: 10.1039/c8ra03658f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Sulfur metabolism is integral to cellular growth and survival. The presence of a wide range of oxidation states of sulfur in biology coupled with its unique reactivity are some key features of the biology of this element. In particular, nearly all oxidation states of sulfur not only occur but are also inter-convertible. In order to study the chemical biology of reactive sulfur species, tools to reliably detect as well as generate these species within cells are necessary. Herein, an overview of strategies to generate certain reactive sulfur species is presented. The donors of reactive sulfur species have been organized based on their oxidation states. These interesting small molecules have helped lay a strong foundation to study the biology of reactive sulfur species and some may have therapeutic applications in the future as well.
Collapse
Affiliation(s)
- Prerona Bora
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411 008 Maharashtra India
| |
Collapse
|
22
|
Kulkarni A, Sharma AK, Chakrapani H. Redox-guided small molecule antimycobacterials. IUBMB Life 2018; 70:826-835. [DOI: 10.1002/iub.1867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Amogh Kulkarni
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| | - Ajay Kumar Sharma
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry; Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road; Pune Maharashtra India
| |
Collapse
|
23
|
Wang W, Wang B. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination. Chem Commun (Camb) 2018; 53:10124-10127. [PMID: 28840924 DOI: 10.1039/c7cc05392d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulfur dioxide (SO2) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO2 donors.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | | |
Collapse
|
24
|
Wang W, Ji X, Du Z, Wang B. Sulfur dioxide prodrugs: triggered release of SO 2via a click reaction. Chem Commun (Camb) 2018; 53:1370-1373. [PMID: 28070577 DOI: 10.1039/c6cc08844a] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sulfur dioxide (SO2) is being recognized as a possible endogenous gasotransmitter with importance on par with that of NO, CO, and H2S. Herein we describe a series of SO2 prodrugs that are activated for SO2 release via a bioorthogonal click reaction. The release rate can be tuned by adjusting the substituents on the prodrug.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Zhenming Du
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| |
Collapse
|
25
|
Pardeshi KA, Ravikumar G, Chakrapani H. Esterase Sensitive Self-Immolative Sulfur Dioxide Donors. Org Lett 2017; 20:4-7. [PMID: 29235873 DOI: 10.1021/acs.orglett.7b02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of cell-permeable esterase-sensitive sulfonates that undergo self-immolation to produce sulfur dioxide (SO2), a gaseous pollutant with new and emerging biological roles, is reported. These compounds should facilitate the study SO2 biology and will lay the platform for newer stimuli-responsive donors of this gas.
Collapse
Affiliation(s)
- Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Govindan Ravikumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| |
Collapse
|
26
|
Sharma AK, Nair M, Chauhan P, Gupta K, Saini DK, Chakrapani H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H 2S) Release. Org Lett 2017; 19:4822-4825. [PMID: 28872885 DOI: 10.1021/acs.orglett.7b02259] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Generation of hydrogen sulfide (H2S) is challenging and few methods are capable of localized delivery of this gas. Here, a boron dipyrromethene-based carbamothioate (BDP-H2S) that is uncaged by visible light of 470 nm to generate carbonyl sulfide (COS), which is rapidly hydrolyzed to H2S in the presence of carbonic anhydrase, a widely prevalent enzyme, is reported.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Mrutyunjay Nair
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore, Karnataka, India
| | - Deepak K Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore, Karnataka, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune , Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| |
Collapse
|
27
|
Ji X, El-Labbad EM, Ji K, Lasheen DS, Serya RAT, Abouzid KA, Wang B. Click and Release: SO 2 Prodrugs with Tunable Release Rates. Org Lett 2017; 19:818-821. [PMID: 28133965 DOI: 10.1021/acs.orglett.6b03805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Employing an intramolecular cycloaddition reaction, we have developed a series of SO2 prodrugs with tunable release rates with half-lives ranging from minutes to days.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303 United States
| | - Eman M El-Labbad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University , Abbassia, Cairo 11566, Egypt
| | - Kaili Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303 United States
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University , Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University , Abbassia, Cairo 11566, Egypt
| | - Khaled A Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University , Abbassia, Cairo 11566, Egypt
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30303 United States
| |
Collapse
|
28
|
Day JJ, Yang Z, Chen W, Pacheco A, Xian M. Benzothiazole Sulfinate: a Water-Soluble and Slow-Releasing Sulfur Dioxide Donor. ACS Chem Biol 2016; 11:1647-51. [PMID: 27031093 DOI: 10.1021/acschembio.6b00106] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfur dioxide (SO2) has long been considered a toxic environmental pollutant and byproduct of industrial processing. Recently it has become evident that SO2 may also have regulatory functions in mammalian pulmonary systems. However, the study of these effects has proven to be challenging due to the difficulty in administering SO2 in a reliable manner. In this work, we report the discovery of a new pH-dependent and water-soluble SO2 donor, benzothiazole sulfinate (BTS). We have found BTS to have slow and sustained SO2 release at physiological pH. Additionally, we have explored its vasorelaxation properties as compared to the authentic SO2 gas solutions. The slow release of BTS should make it a useful tool for the study of endogenously generated SO2.
Collapse
Affiliation(s)
- Jacob J. Day
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Armando Pacheco
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
29
|
Sabet-Sarvestani H, Eshghi H, Izadyar M, Bakavoli M, Noroozi-Shad N, Ziaee F. Stereoelectronic Effects: A Powerful Concept in Explaining Kinetic and Thermodynamic Aspects of Retro Cheletropic Reactions. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14448273156159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kinetic and thermodynamic aspects of the retro cheletropic reaction of sulfur dioxide extrusion have been investigated. The interaction of the X–S bond (X=NH, S, O and CH2) and oxygen lone pairs of SO2 showed remarkable stereoelectronic effects and its correlation with the difference between computed and empirical bond length (Δl) have been analysed. The facility of the reaction in the case of four derivatives (X=NH, S, O and CH2) has been investigated from the viewpoint of product delocalisation energy. In addition, substitution effects have been studied on the relative Gibbs free energy of reaction for the oxygen derivative (X=O). Moreover, a correlation has been found between the Gibbs free energy of reaction in the presence of the substituent and Δl as a criterion for the value of the interaction between the X–S bond and oxygen lone pairs of the SO2 group. Finally, a new method based on electron density has been used for evaluation of the synchronicity values of the reaction. According to the corresponding diagrams, the calculated synchronicity values of the Wiberg bond indices and electron density are in good agreement.
Collapse
Affiliation(s)
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mehdi Bakavoli
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nazanin Noroozi-Shad
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fariborz Ziaee
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Pardeshi KA, Malwal SR, Banerjee A, Lahiri S, Rangarajan R, Chakrapani H. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Bioorg Med Chem Lett 2015; 25:2694-7. [PMID: 25981687 DOI: 10.1016/j.bmcl.2015.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.
Collapse
Affiliation(s)
- Kundansingh A Pardeshi
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Satish R Malwal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India
| | - Ankita Banerjee
- Vitas Pharma Research Private Limited, Technology Business Incubator, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Surobhi Lahiri
- Vitas Pharma Research Private Limited, Technology Business Incubator, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Radha Rangarajan
- Vitas Pharma Research Private Limited, Technology Business Incubator, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411 008, Maharashtra, India.
| |
Collapse
|