1
|
Chai X, Zhou P, Xia Q, Shi B, Wang G. Fluorine-containing nano-objects with the same compositions but different segment distributions: synthesis, characterization and comparison. Polym Chem 2022. [DOI: 10.1039/d2py01148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PHOS-b-PPFS nano-objects and PPFS-b-PHOS nano-objects can be prepared by RAFT PISA and MISA processes, respectively. These nano-objects have the same compositions but different segment distributions and distinct hydrophilic/hydrophobic properties.
Collapse
Affiliation(s)
- Xingpeng Chai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qi Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Guerre M, Lopez G, Améduri B, Semsarilar M, Ladmiral V. Solution self-assembly of fluorinated polymers, an overview. Polym Chem 2021. [DOI: 10.1039/d1py00221j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The incorporation of fluorinated moieties into a polymer can confer unique properties and often lead in solution to original morphologies endowed with rare properties.
Collapse
Affiliation(s)
- Marc Guerre
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | - Gérald Lopez
- ICGM
- Univ Montpellier-CNRS-ENSCM
- Montpellier
- France
| | | | | | | |
Collapse
|
3
|
Gao Q, Han T, Liu X, Qiu Z, Liu S, Wei P, Wang X, Lam JWY, Tang BZ. Facile Synthesis of Functional Processable Fluoropolydienes by Alkyne-Based Multicomponent Polycouplings. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingqing Gao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
- School of Materials Science and Engineering, Xiamen University of Technology, Ligong Road No.600, Jimei District, Xiamen 361024, China
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaolin Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
| | - Zijie Qiu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
| | - Shunjie Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
| | - Peifa Wei
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
| | - Xinnan Wang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 122001, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Liu H, Zhang S, Huang X, Ding A, Lu G. Construction of well-defined difluoromethylthio-containing amphiphilic homopolymers by RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py01234c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A well-defined difluoromethylthio-containing amphiphilic homopolymer with a lower Tg was obtained by RAFT polymerization.
Collapse
Affiliation(s)
- Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
5
|
Post-functionalization of perfluorocyclobutyl aryl ether polymers with a novel perfluorosulfonated side chain precursor. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Franken LE, Wei Y, Chen J, Boekema EJ, Zhao D, Stuart MCA, Feringa BL. Solvent Mixing To Induce Molecular Motor Aggregation into Bowl-Shaped Particles: Underlying Mechanism, Particle Nature, and Application To Control Motor Behavior. J Am Chem Soc 2018; 140:7860-7868. [PMID: 29879351 PMCID: PMC6026844 DOI: 10.1021/jacs.8b03045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control over dynamic functions in larger assemblies is key to many molecular systems, ranging from responsive materials to molecular machines. Here we report a molecular motor that forms bowl-shaped particles in water and how confinement of the molecular motor affects rotary motion. Studying the aggregation process in a broader context, we provide evidence that, in the case of bowl-shaped particles, the structures are not the product of self-assembly, but a direct result of the mixing a good solvent and a (partial) non-solvent and highly independent of the molecular design. Under the influence of the non-solvent, droplets are formed, of which the exterior is hardened due to the increase in the glass transition temperature by the external medium, while the interior of the droplets remains plasticized by the solvent, resulting in the formation of stable bowl-shaped particles with a fluid interior, a glass-like exterior, and a very specific shape: dense spheres with a hole in their side. Applying this to a bulky first-generation molecular motor allowed us to change its isomerization behavior. Furthermore, the motor shows in situ photo-switchable aggregation-induced emission. Strong confinement prohibits the thermal helix inversion step while altering the energy barriers that determine the rotary motion, such that it introduces a reverse trans- cis isomerization upon heating. These studies show a remarkable control of forward and backward rotary motion by simply changing solvent ratios and extent of confinement.
Collapse
Affiliation(s)
- Linda E Franken
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Yuchen Wei
- Centre for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Jiawen Chen
- Centre for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Depeng Zhao
- Centre for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Marc C A Stuart
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands.,Centre for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
7
|
Li W, Che C, Pang J, Cao Z, Jiao Y, Xu J, Ren Y, Li X. Autofluorescent Polymers: 1 H,1 H,2 H,2 H-Perfluoro-1-decanol Grafted Poly(styrene- b-acrylic acid) Block Copolymers without Conventional Fluorophore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5334-5341. [PMID: 29665686 DOI: 10.1021/acs.langmuir.8b00791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recently, although several unconventional luminescent polymers have been synthesized, it still remains a significant challenge to prepare various new fluorescent polymers by functionalization of nonfluorescent polymers. A nonfluorescent 1 H,1 H,2 H,2 H-perfluoro-1-decanol grafted to nonfluorescent polystyrene- b-poly(acrylic acid) block copolymers through simply esterification reaction can exhibit strong blue emission. On the basis of control experiments and theoretical simulation, we have proposed that the luminescence stems from interchain n → π* interaction between the lone pair (n) of hydroxyl O atoms of carboxyl units and empty π* orbital of ester carbonyl unit. In addition, the fluorescent polymers are successfully employed for fluorescence imaging in living HeLa cell.
Collapse
Affiliation(s)
- Wenting Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Chaoyue Che
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Juanjuan Pang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Zhenhao Cao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Yapei Jiao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Jingjing Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Yufang Ren
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| | - Xue Li
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering , University of Jinan , 336 West Road of Nan Xinzhuang , Jinan 250022 , People's Republic of China
| |
Collapse
|
8
|
Liu H, Lu G, Feng C, Huang X. A new difluoromethoxyl-containing acrylate monomer for PEG-b-PDFMOEA amphiphilic diblock copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00942b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article reports the first synthesis of a well-defined difluoromethoxyl-containing polyacrylate via ATRP.
Collapse
Affiliation(s)
- Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
9
|
Xu B, Yao W, Li Y, Zhang S, Huang X. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer. Sci Rep 2016; 6:39504. [PMID: 28000757 PMCID: PMC5175170 DOI: 10.1038/srep39504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/23/2016] [Indexed: 11/09/2022] Open
Abstract
A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Wenqiang Yao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
10
|
Li S, He J, Zhang M, Wang H, Ni P. Multicompartment morphologies self-assembled from fluorinated ABC triblock terpolymers: the effects of flexible and rigid hydrophobic moieties. Polym Chem 2016. [DOI: 10.1039/c5py02017d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two kinds of fluorinated ABC triblock terpolymers have been prepared by oxyanion-initiated polymerization, and the effects of flexible and rigid polyolefin moieties on their self-assembled multicompartment morphologies were investigated.
Collapse
Affiliation(s)
- Sen Li
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Hairong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| |
Collapse
|
11
|
Xue Z, Wang Z, He D, Zhou X, Xie X. Synthesis of poly(n
-butyl acrylate) homopolymer and poly(styrene-b
-n
-butyl acrylate-b
-styrene) triblock copolymer via AGET emulsion ATRP using a cationic surfactant. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Zhen Wang
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University; Wuhan 430056 China
| | - Xingping Zhou
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|
12
|
Self-assembled micelle and film surface of fluorine/silicon-containing triblock copolymer. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3618-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Feng C, Zhu C, Yao W, Lu G, Li Y, Lv X, Jia M, Huang X. Constructing semi-fluorinated PDEAEMA-b-PBTFVBP-b-PDEAEMA amphiphilic triblock copolymer via successive thermal step-growth cycloaddition polymerization and ATRP. Polym Chem 2015. [DOI: 10.1039/c5py01404b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic triblock copolymers containing semi-fluorinated PBTFVBP and hydrophilic PDEAEMA segments were synthesized by the site transformation strategy.
Collapse
Affiliation(s)
- Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chao Zhu
- Key Laboratory of Science and Technology on Electro-magnetic Environmental Effects and Electro-optical Engineering
- PLA University of Science & Technology
- Nanjing
- People's Republic of China
| | - Wenqiang Yao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xuliang Lv
- Key Laboratory of Science and Technology on Electro-magnetic Environmental Effects and Electro-optical Engineering
- PLA University of Science & Technology
- Nanjing
- People's Republic of China
| | - Mingchun Jia
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
14
|
Szabó Á, Szarka G, Iván B. Synthesis of poly(poly(ethylene glycol) methacrylate)-polyisobutylene ABA block copolymers by the combination of quasiliving carbocationic and atom transfer radical polymerizations. Macromol Rapid Commun 2014; 36:238-48. [PMID: 25353143 DOI: 10.1002/marc.201400469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/13/2014] [Indexed: 12/14/2022]
Abstract
Systematic investigations are carried out on the synthesis of a series of new, unique ABA-type triblock copolymers consisting of the hydrophobic and chemically inert polyisobutylene (PIB) inner and the hydrophilic comb-shaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer as an outer block. Telechelic PIB macroinitiators with narrow molecular weight distributions (MWD) are synthesized by quasiliving carbocationic polymerization of isobutylene with a bifunctional initiator followed by quantitative chain end derivatizations. Atom transfer radical polymerization (ATRP) of PEGMAs with various molecular weights is investigated by using these macroinitiators. It is found that CuBr is an inefficient ATRP catalyst, while CuCl leads to high, nearly complete conversions of the PEGMA macromonomers. Gel permeation chromatography (GPC) analyses reveal slow initiation of PEGMA at relatively high PIB/PEGMA ratios or with PEGMAs of higher molecular weights due to steric hindrance between the macroinitiator and macromonomer. The occurrence of slow initiation, and not permanent termination, is proven by highly efficient ATRP of a low-molecular-weight monomer, methyl methacrylate, with the block copolymers as macroinitiators. Successful synthesis of PPEGMA-PIB-PPEGMA ABA block copolymers is obtained by using either low-molecular-weight PEGMA or relatively low macroinitiator/macromonomer ratios. Differential scanning calorimetry (DSC) indicates phase separation and significant suppression of the crystallinity of the pendant poly(ethylene glycol) (PEG) chains in these new block copolymers.
Collapse
Affiliation(s)
- Ákos Szabó
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | | | | |
Collapse
|