1
|
Callegari C, Tedesco C, Corbo A, Prato M, Malavasi L, Ravelli D. Application of Lead-Free Metal Halide Perovskite Heterojunctions for the Carbohalogenation of C-C Multiple Bonds. Org Lett 2025; 27:3667-3672. [PMID: 40169388 PMCID: PMC11998073 DOI: 10.1021/acs.orglett.5c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
A graphitic carbon nitride/lead-free double perovskite heterojunction (g-C3N4/Cs2AgBiCl6) has been adopted as a heterogeneous photocatalyst under visible light irradiation. The employed material enabled the atom transfer radical addition-type carbohalogenation of multiple C-C bonds, including (internal) alkenes and alkynes, with alkyl halides. The protocol showed a remarkable functional group tolerance, compatible with the late-stage functionalization of natural and pharmaceutical derivatives, and could be easily scaled up, delivering >1 g of the desired products.
Collapse
Affiliation(s)
- Camilla Callegari
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Costanza Tedesco
- Energy
and Materials Chemistry Group, Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Alessia Corbo
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Lorenzo Malavasi
- Energy
and Materials Chemistry Group, Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Sriram A, Mohamathu Ghouse A, Murthy Akondi S. Ferrocene Catalyzed Radical Cascade Cyclization of Aryl 1,6-Diynes: Access to Cyanoalkylsulfonyl Fluorenes. Chem Asian J 2025; 20:e202401383. [PMID: 39763098 DOI: 10.1002/asia.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/21/2025]
Abstract
A ferrocene-catalyzed cyanoalkylsulfonylative radical cascade cyclization of aryl 1,6-diynes using cycloketone oxime esters and DABCO.(SO₂)₂ (DABSO) is reported. The reaction proceeds with notable chemo- and regioselectivity, without requiring additional oxidants or reductants. Interestingly, the methodology facilitates the formation of an unprecedented dicyanoalkylsulfonylated derivative in the case of electronically deficient aryl 1,6-diynes. Additionally, this transformation is compatible with substrates derived from drugs and bioactive molecules, highlighting its synthetic utility.
Collapse
Affiliation(s)
- Ajmeera Sriram
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of scientific and innovative research (AcSIR), Ghaziabad, 201002, India
| | - Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of scientific and innovative research (AcSIR), Ghaziabad, 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of scientific and innovative research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Zeitler SM, Golder MR. Shake, shear, and grind! - the evolution of mechanoredox polymerization methodology. Chem Commun (Camb) 2023; 60:26-35. [PMID: 38018257 DOI: 10.1039/d3cc04323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In the last half decade, mechanoredox catalysis has enabled an entirely new genre of polymerization methodology. In this paradigm, mechanical force, such as ultrasonic cavitation bubble collapse or ball mill grinding, polarizes piezoelectric nanoparticles; the resultant piezopotential drives the redox processes necessary for free- and controlled-radical polymerizations. Since being introduced, evolution of these methods facilitates exploration of mechanistic underpinnings behind key electron-transfer events. Mechanical force has not only been identified as a "greener" alternative to more traditional reaction stimuli (e.g., heat, light) for the synthesis of commodity polymers, but also a potential technology to enable the production of novel thermoplastic and thermoset materials that are either challenging, or even impossible, to access using conventional solution-state approaches. In this Feature Article, significant contributions to such methods are highlighted within. Advances and ongoing challenges in both ultrasound and ball milling driven reactions for radical polymerization and crosslinking are identified and discussed.
Collapse
Affiliation(s)
- Sarah M Zeitler
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA.
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
5
|
Rajeshwaran P, Trouvé J, Youssef K, Gramage‐Doria R. Sustainable Wacker-Type Oxidations. Angew Chem Int Ed Engl 2022; 61:e202211016. [PMID: 36164675 PMCID: PMC10092001 DOI: 10.1002/anie.202211016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/09/2022]
Abstract
The Wacker reaction is the oxidation of olefins to ketones and typically requires expensive and scarce palladium catalysts in the presence of an additional copper co-catalyst under harsh conditions (acidic media, high pressure of air/dioxygen, elevated temperatures). Such a transformation is relevant for industry, as shown by the synthesis of acetaldehyde from ethylene as well as for fine-chemicals, because of the versatility of a carbonyl group placed at specific positions. In this regard, many contributions have focused on controlling the chemo- and regioselectivity of the olefin oxidation by means of well-defined palladium catalysts under different sets of reaction conditions. However, the development of Wacker-type processes that avoid the use of palladium catalysts has just emerged in the last few years, thereby paving the way for the generation of more sustainable procedures, including milder reaction conditions and green chemistry technologies. In this Minireview, we discuss the development of new catalytic processes that utilize more benign catalysts and sustainable reaction conditions.
Collapse
|
6
|
Efficient solution polymerization of vinyl monomers using iron nanoparticle grafted carbon nano-granules. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Martinez MR, Schild D, De Luca Bossa F, Matyjaszewski K. Depolymerization of Polymethacrylates by Iron ATRP. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dirk Schild
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Li B, Bunescu A, Gaunt MJ. Multicomponent synthesis of α-chloro alkylboronic esters via visible-light-mediated dual catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Electrochemical Investigation of Iron-Catalyzed Atom Transfer Radical Polymerization. Molecules 2022; 27:molecules27196312. [PMID: 36234849 PMCID: PMC9570559 DOI: 10.3390/molecules27196312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Use of iron-based catalysts in atom transfer radical polymerization (ATRP) is very interesting because of the abundance of the metal and its biocompatibility. Although the mechanism of action is not well understood yet, iron halide salts are usually used as catalysts, often in the presence of nitrogen or phosphorous ligands (L). In this study, electrochemically mediated ATRP (eATRP) of methyl methacrylate (MMA) catalyzed by FeCl3, both in the absence and presence of additional ligands, was investigated in dimethylformamide. The electrochemical behavior of FeCl3 and FeCl3/L was deeply investigated showing the speciation of Fe(III) and Fe(II) and the role played by added ligands. It is shown that amine ligands form stable iron complexes, whereas phosphines act as reducing agents. eATRP of MMA catalyzed by FeCl3 was investigated in different conditions. In particular, the effects of temperature, catalyst concentration, catalyst-to-initiator ratio, halide ion excess and added ligands were investigated. In general, polymerization was moderately fast but difficult to control. Surprisingly, the best results were obtained with FeCl3 without any other ligand. Electrogenerated Fe(II) effectively activates the dormant chains but deactivation of the propagating radicals by Fe(III) species is less efficient, resulting in dispersity > 1.5, unless a high concentration of FeCl3 is used.
Collapse
|
10
|
Sifri RJ, Ma Y, Fors BP. Photoredox Catalysis in Photocontrolled Cationic Polymerizations of Vinyl Ethers. Acc Chem Res 2022; 55:1960-1971. [PMID: 35771008 DOI: 10.1021/acs.accounts.2c00252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAdvances in photocontrolled polymerizations have expanded the scope of polymer architectures and structures that can be synthesized for various applications. The majority of these polymerizations have been developed for radical processes, which limits the diversity of monomers that can be used in macromolecular design. More recent developments of photocontrolled cationic polymerizations have taken a step toward addressing this limitation and have expanded the palette of monomers that can be used in stimuli-regulated polymerizations, enabling the synthesis of previously inaccessible polymeric structures. This Account will detail our group's studies on cationic polymerization processes where chain growth is regulated by light and highlight how these methods can be combined with other stimuli-controlled polymerizations to precisely dictate macromolecular structure.Photoinitiated cationic polymerizations are well-studied and important processes that have control over initiation. However, we wanted to develop systems where we had spatiotemporal control over both polymer initiation and chain growth. This additional command over the reaction provides the ability to manipulate the growing polymer with an external stimulus during a polymerization, which can be used to control structure. To achieve this goal, we set out to develop a method to photoreversibly generate a cation at a growing chain end that could participate in a controlled polymerization process. We took inspiration from previous work on cationic degenerate chain transfer polymerizations of vinyl ethers that used thiocarbonylthio chain transfer agents. These polymerizations were initiated by a strong acid and gave well-defined poly(vinyl ether)s. We posited that we could remove the acid initiator in these systems and reversibly oxidize the thiocarbonylthio chain ends in these reactions with a photocatalyst to give a photocontrolled cationic polymerization of vinyl ethers. This Account will focus on our journey to discover cationic photocontrolled polymerizations. We will summarize our initial developments and detail our mechanistic understanding of these reactions using both organic and inorganic based photocatalysts, and we will outline more recent efforts to expand cationic degenerate chain transfer polymerizations to other thioacetal initiators. Finally, we will detail how these photocontrolled cationic polymerizations can be used to switch monomer selectivity in situ using light to control polymer structure. At the end of the Account, we will discuss our vision for future potential applications of these photocontrolled cationic polymerizations in the synthesis of novel block copolymers and next generation cross-linked networks.
Collapse
Affiliation(s)
- Renee J Sifri
- Cornell University, Ithaca, New York 14853, United States
| | - Yuting Ma
- Cornell University, Ithaca, New York 14853, United States
| | - Brett P Fors
- Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Ribeiro JP, Mendonça PV, Santo D, De Bon F, Faneca H, Guliashvili T, Coelho JF, Serra AC. Expanding the use of affordable CuSO4·5H2O in ATRP techniques in homogeneous media. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Dadashi-Silab S, Kim K, Lorandi F, Schild DJ, Fantin M, Matyjaszewski K. Effect of halogen and solvent on iron-catalyzed atom transfer radical polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01601f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Efficient exchange of Br in iron-catalyzed ATRP in anisole provided well-controlled polymers with low dispersity as opposed to the Cl-based initiating system, which resulted in large dispersities due to the slower activation/deactivation with Cl.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Dirk J. Schild
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
13
|
Diacon A, Rusen E, Rizea F, Ghebaur A, Berger D, Șomoghi R, Matei A, Palade P, Tutunaru O. One-pot strategy for obtaining magnetic PMMA particles through ATRP using Fe(CO)5 as co-initiator. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hajizadeh S, Bülow L, Ye L. Synthesizing a Hybrid Nanocomposite as an Affinity Adsorbent through Surface-Initiated Atom Transfer Radical Polymerization Catalyzed by Myoglobin. ACS OMEGA 2021; 6:10462-10474. [PMID: 34056199 PMCID: PMC8153740 DOI: 10.1021/acsomega.1c00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
A hybrid bifunctional core-shell nanostructure was synthesized for the first time via surface-initiated atom transfer radical polymerization (SI-ATRP) using myoglobin as a biocatalyst (ATRPase) in an aqueous solution. N-Isopropyl acrylamide (NIPA) and N-(3-aminopropyl)methacrylamide (APMA) were applied to graft flexible polymer brushes onto initiator-functionalized silica nanoparticles. Two different approaches were implemented to form the core-shell nanocomposite: (a) random copolymerization, Si@p(NIPA-co-APMA) and (b) sequential block copolymerization, Si@pNIPA-b-pAPMA. These nanocomposites can be used as versatile intermediates, thereby leading to different types of materials for targeted applications. In this work, a phenylboronic acid ligand was immobilized on the side chain of the grafted brushes during a series of postmodification reactions to create a boronate affinity adsorbent. The ability to selectively bind glycoproteins (ovalbumin and glycated hemoglobin) via boronic acid was assessed at two different temperatures (20 and 40 °C), where Si@pNIPA-b-APMABA (163 mg OVA/g of particle) displayed an approximately 1.5-fold higher capacity than Si@p(NIPA-co-APMA)BA (107 mg OVA/g of particle). In addition to selective binding to glycoproteins, the nanocomposites exhibited selective binding for myoglobin due to the molecular imprinting effect during the postmodification process, that is, 72 and 111 mg Mb/g for Si@p(NIPA-co-APMA)BA and Si@pNIPA-b-pAPMABA, respectively.
Collapse
|
15
|
Thevenin L, Daran JC, Poli R, Fliedel C. Cobalt complexes of an OSNSO-tetrapodal pentadentate ligand: Synthesis, structures and reactivity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
17
|
Sun Y, Zhai G. Conventional and controlled radical polymerization redox-initiated by Cerium(IV) and Acrylamide as an intrinsically reducing inimer: a facile strategy to branched polyacrylamide. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
19
|
Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron complexes are particularly interesting as catalyst systems over the other transition metals (including noble metals) due to iron’s high natural abundance and mediation in important biological processes, therefore making them non-toxic, cost-effective, and biocompatible. Both homogeneous and heterogeneous catalysis mediated by iron as a transition metal have found applications in many industries, including oxidation, C-C bond formation, hydrocarboxylation and dehydration, hydrogenation and reduction reactions of low molecular weight molecules. These processes provided substrates for industrial-scale use, e.g., switchable materials, sustainable and scalable energy storage technologies, drugs for the treatment of cancer, and high molecular weight polymer materials with a predetermined structure through controlled radical polymerization techniques. This review provides a detailed statement of the utilization of homogeneous and heterogeneous iron-based catalysts for the synthesis of both low and high molecular weight molecules with versatile use, focusing on receiving functional materials with high potential for industrial application.
Collapse
|
20
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
21
|
Li C, Xiao L, Zhang Q, Cheng X. Reaction-based highly selective and sensitive monomer/polymer probes with Schiff base groups for the detection of Hg 2+ and Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118763. [PMID: 32827909 DOI: 10.1016/j.saa.2020.118763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
It is urgent and important to detect heavy metals in environments. In this work, novel reaction-based fluorescent probes were obtained by Schiff base reaction. The probes with Schiff base moiety (-C=N-) undergo irreversible hydrolysis in the presence of Hg2+ and Fe3+. They exhibit perfect high selectivity and sensitivity to Hg2+and Fe3+ ions. Upon the addition of Hg2+and Fe3+, fluorescence intensity of the probes increased notably. And the color of the probe changes from brown to bright green under UV light, which can realize "naked eye" detection. In addition, Schiff base group was introduced into polyurethane chain through condensation polymerization reaction. As expected, the fluorescent polyurethane probe (P2) maintained the detection performance of its original small molecules (BSD). Even more P2 showed a more sensitive detection effect than BSD, and the detection limits of P2 for Hg2+ and Fe3+ reach 0.19 μM and 0.21 μM, respectively. It indicates that Reaction-based probes could be a useful tool for the detection of Hg2+ and Fe3+.
Collapse
Affiliation(s)
- Chunqing Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Li Xiao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Qinyu Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
22
|
Yuan M, Xu L, Cui X, Lv J, Zhang P, Tang H. Facile Synthesis of Ultrahigh Molecular Weight Poly(Methyl Methacrylate) by Organic Halides in the Presence of Palladium Nanoparticles. Polymers (Basel) 2020; 12:polym12112747. [PMID: 33233643 PMCID: PMC7699786 DOI: 10.3390/polym12112747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
A facile and versatile approach for the synthesis of ultrahigh molecular weight poly(methyl methacrylate) (PMMA) at mild conditions was developed. Certain organic halides combined with a catalytical amount of palladium nanoparticles (Pd NPs) were found to be very effective in initiating polymerizations of methyl methacrylate (MMA), methyl acrylate, vinyl acetate and other vinyl monomers. An ultrahigh molecular weight PMMA with a number-average molecular weight of 4.65 × 106 Da and a weight-average molecular weight of 8.08 × 106 Da was synthesized at 70 °C using 2-bromoisobutyric acid ethyl ester (EBiB) as an initiator in the presence of catalytical amount (10.1 ppm) of Pd NPs. A kinetic investigation found that the orders of polymerization with respect to EBiB, Pd NP and MMA were 0.23, 0.50, and 0.58, respectively. Proton nuclear magnetic resonance (1H NMR) combined with matrix-assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF) and gel permeation chromatography (GPC) were used to prove that the macromolecular chain had an end-group of EBiB residue. The electron spin resonance (ESR), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) results reveal that the reaction of EBiB with Pd NPs caused a bromo atom (Br) transfer from EBiB to Pd NPs and resulted in the generation of EBiB residue radical to initiate the polymerization of MMA and the formation of PdIIBr2 on the surface of Pd nanoparticles.
Collapse
Affiliation(s)
- Ming Yuan
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.Y.); (L.X.); (X.C.); (J.L.)
| | - Lili Xu
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.Y.); (L.X.); (X.C.); (J.L.)
| | - Xuetao Cui
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.Y.); (L.X.); (X.C.); (J.L.)
| | - Jiaxing Lv
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.Y.); (L.X.); (X.C.); (J.L.)
| | - Panpan Zhang
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Huadong Tang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (M.Y.); (L.X.); (X.C.); (J.L.)
- Correspondence: ; Tel.: +86-18957127963 or +86-571-88320215
| |
Collapse
|
23
|
Amino pyridine iron(II) complexes: Characterization and catalytic application for atom transfer radical polymerization and catalytic chain transfer. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Yuan M, Cui X, Zhu W, Tang H. Development of Environmentally Friendly Atom Transfer Radical Polymerization. Polymers (Basel) 2020; 12:E1987. [PMID: 32878287 PMCID: PMC7563397 DOI: 10.3390/polym12091987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Atom transfer radical polymerization (ATRP) is one of the most successful techniques for the preparation of well-defined polymers with controllable molecular weights, narrow molecular weight distributions, specific macromolecular architectures, and precisely designed functionalities. ATRP usually involves transition-metal complex as catalyst. As the most commonly used copper complex catalyst is usually biologically toxic and environmentally unsafe, considerable interest has been focused on iron complex, enzyme, and metal-free catalysts owing to their low toxicity, inexpensive cost, commercial availability and environmental friendliness. This review aims to provide a comprehensive understanding of iron catalyst used in normal, reverse, AGET, ICAR, GAMA, and SARA ATRP, enzyme as well as metal-free catalyst mediated ATRP in the point of view of catalytic activity, initiation efficiency, and polymerization controllability. The principle of ATRP and the development of iron ligand are briefly discussed. The recent development of enzyme-mediated ATRP, the latest research progress on metal-free ATRP, and the application of metal-free ATRP in interdisciplinary areas are highlighted in sections. The prospects and challenges of these three ATRP techniques are also described in the review.
Collapse
Affiliation(s)
| | | | | | - Huadong Tang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; (M.Y.); (X.C.); (W.Z.)
| |
Collapse
|
25
|
Rolland M, Truong NP, Whitfield R, Anastasaki A. Tailoring Polymer Dispersity in Photoinduced Iron-Catalyzed ATRP. ACS Macro Lett 2020; 9:459-463. [PMID: 35648502 DOI: 10.1021/acsmacrolett.0c00121] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although dispersity (Đ) plays an important role in controlling polymer properties, there are very few chemical methods that can sufficiently tune it. Here we report a simple, batch, and environmentally benign photoinduced iron-catalyzed ATRP methodology that enables the efficient control of Đ for both homopolymers and block copolymers. We show that by judiciously varying the concentration of the FeBr3/TBABr catalyst, a range of dispersities can be obtained (1.18 < Đ < 1.80) while maintaining monomodal molecular weight distributions. High end-group fidelity was confirmed by MALDI-ToF-MS and was further supported by the efficient synthesis of in situ block copolymers where the dispersity of the second block could be controlled upon demand. Importantly, through the use of low ppm amounts of the catalyst, perfect temporal control could be attained during intermittent "on/off" cycles. This work considerably expands the chemical toolbox for tuning Đ of homo- and block copolymers.
Collapse
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| |
Collapse
|
26
|
Dadashi-Silab S, Matyjaszewski K. Iron Catalysts in Atom Transfer Radical Polymerization. Molecules 2020; 25:E1648. [PMID: 32260141 PMCID: PMC7180715 DOI: 10.3390/molecules25071648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.
Collapse
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
27
|
Poly (Ethylene Oxide)-Based Block Copolymer Electrolytes Formed via Ligand-Free Iron-Mediated Atom Transfer Radical Polymerization. Polymers (Basel) 2020; 12:polym12040763. [PMID: 32244569 PMCID: PMC7240491 DOI: 10.3390/polym12040763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
The Br-terminated poly (ethylene oxide) (PEO-Br) is used as a green and efficient macroinitiator in bulk Fe-catalyzed atom transfer radical polymerization (ATRP) without the addition of any organic ligands. The polymerization rate is able to be mediated by PEO-Br with various molecular weights, and the decrease in redox potential of FeBr2 in cyclic voltammetry (CV) curves indicates that an increased coordination effect is deteriorated with the depressing reaction activity in the longer ethylene oxide (EO) chain in PEO-Br. In combination with the study of different catalysts and catalytic contents, the methyl metharylate (MMA) or poly (ethylene glycol) monomethacrylate (PEGMA) was successfully polymerized with PEO-Br as an initiator. This copolymer obtained from PEGMA polymerization can be further employed as a polymer matrix to form the polymer electrolyte (PE). The higher ionic conductivity of PE was obtained by using a high molecular weight of copolymer.
Collapse
|
28
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron-Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020; 59:4750-4755. [PMID: 31894618 DOI: 10.1002/anie.201915084] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/08/2022]
Abstract
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate "unnatural" polymers in the presence of "host" cells, thus setting up the possibility of making natural-synthetic hybrid structures and conjugates.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| |
Collapse
|
29
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron‐Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mechelle R. Bennett
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Phil J. Hill
- Division of Microbiology, Brewing and BiotechnologySchool of BiosciencesUniversity of Nottingham Sutton Bonington Campus Nottingham LE12 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Frankie J. Rawson
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| |
Collapse
|
30
|
Wang J, Xie X, Xue Z, Fliedel C, Poli R. Ligand- and solvent-free ATRP of MMA with FeBr3 and inorganic salts. Polym Chem 2020. [DOI: 10.1039/c9py01840a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cost-effective and safe protocol for the bulk ATRP of MMA uses FeBr3, EBrPA and an inorganic compound (carbonate, bicarbonate, phosphate, hydroxide, chloride, bromide) of an alkali metal cation.
Collapse
Affiliation(s)
- Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Christophe Fliedel
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| |
Collapse
|
31
|
Li D, Shen X. Iron-catalyzed regioselective alkylation of 1,4-quinones and coumarins with functionalized alkyl bromides. Org Biomol Chem 2020; 18:750-754. [DOI: 10.1039/c9ob02289a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient Fe-catalyzed regioselective alkylation of 1,4-quinones and coumarins, using functionalized alkyl bromides as alkylating reagents, has been developed.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Xianfu Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
32
|
Dadashi-Silab S, Szczepaniak G, Lathwal S, Matyjaszewski K. Iodine-mediated photoATRP in aqueous media with oxygen tolerance. Polym Chem 2020. [DOI: 10.1039/c9py01650c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iodine-mediated photoATRP was conducted in aqueous media enabling fast and well-controlled polymerizations under visible light without deoxygenation.
Collapse
Affiliation(s)
| | - Grzegorz Szczepaniak
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
- Faculty of Chemistry
| | - Sushil Lathwal
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | | |
Collapse
|
33
|
Dadashi-Silab S, Matyjaszewski K. Iron-Catalyzed Atom Transfer Radical Polymerization of Semifluorinated Methacrylates. ACS Macro Lett 2019; 8:1110-1114. [PMID: 35619440 DOI: 10.1021/acsmacrolett.9b00579] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorinated polymers are an important class of functional materials that exhibit unique properties such as high chemical resistance, thermal stability, and low surface energy. Atom transfer radical polymerization (ATRP) of semifluorinated monomers catalyzed by copper catalysts often requires development of special conditions to control the polymerization and prevent side reactions such as base-catalyzed transesterification between the fluoro-containing monomers and solvents. In this paper, photoinduced iron-catalyzed ATRP was applied to the polymerization of a variety of semifluorinated methacrylate monomers. Polymerizations were initiated by photochemical generation of the Fe catalyst activator under blue light irradiation, enabling temporal control over the growth of polymer chains, and were well-controlled in various solvents, including fluorinated and nonfluorinated solvents, without undergoing any side reactions. Moreover, in situ chain extension and block copolymerization experiments demonstrated the preservation of chain end functionality, enabling facile synthesis of well-controlled block copolymers.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Wang J, Han J, Xie X, Xue Z, Fliedel C, Poli R. FeBr2-Catalyzed Bulk ATRP Promoted by Simple Inorganic Salts. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jianyu Han
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
35
|
Champouret Y, Hashmi OH, Visseaux M. Discrete iron-based complexes: Applications in homogeneous coordination-insertion polymerization catalysis. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
γ-valerolactone (GVL) as a bio-based green solvent and ligand for iron-mediated AGET ATRP. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this paper, γ-valerolactone (GVL), a bio-based polar solvent, was applied as green solvent for iron(III)-catalyzed AGET ATRP without any external ligand. GVL is a fully degradable, non-toxic green solvent and has complex ability to iron halide complexes through –OCO- group. GVL as the solvent and the ligand for AGET ATRP of MMA in a controlled manner, as proved by kinetic study, the low PDI values and the increase in polymer molecular weight versus monomer conversion. Chain re-initiation experiments and 1HNMR characterization were conducted to further confirm the living feature.
Collapse
|
37
|
Fang C, Fantin M, Pan X, de Fiebre K, Coote ML, Matyjaszewski K, Liu P. Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). J Am Chem Soc 2019; 141:7486-7497. [PMID: 30977644 PMCID: PMC6634993 DOI: 10.1021/jacs.9b02158] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Copper-catalyzed atom transfer radical polymerization (Cu-ATRP) is one of the most widely used controlled radical polymerization techniques. Notwithstanding the extensive mechanistic studies in the literature, the transition states of the activation/deactivation of the growing polymer chain, a key equilibrium in Cu-ATRP, have not been investigated computationally. Therefore, the understanding of the origin of ligand and initiator effects on the rates of activation/deactivation is still limited. Here, we present the first computational analysis of Cu-ATRP activation transition states to reveal factors that affect the rates of activation and deactivation. The Br atom transfer between the polymer chain and the Cu catalyst occurs through an unusual bent geometry that involves pronounced interactions between the polymer chain end and the ancillary ligand on the Cu catalyst. Therefore, the rates of activation/deactivation are determined by both the electronic properties of the Cu catalyst and the ligand-initiator steric repulsions. In addition, our calculations revealed the important role of ligand backbone flexibility on the activation. These theoretical analyses led to the identification of three chemically meaningful descriptors, namely HOMO energy of the catalyst ( EHOMO), percent buried volume ( Vbur%), and distortion energy of the catalyst (Δ Edist), to describe the electronic, steric, and flexibility effects on reactivity, respectively. A robust and simple predictive model for ligand effect on reactivity is thereby established by correlating these three descriptors with experimental activation rate constants using multivariate linear regression. Validation using a structurally diverse set of ligands revealed the average error is less than ±2 kcal/mol compared to the experimentally derived activation energies. The same approach was also applied to develop a predictive model for reactivity of different alkyl halide initiators using R-X bond dissociation energy (BDE) and Cu-X halogenophilicity as descriptors.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Kurt de Fiebre
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| |
Collapse
|
38
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
39
|
Yamane Y, Yoshinaga K, Sumimoto M, Nishikata T. Iron-Enhanced Reactivity of Radicals Enables C–H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04872] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yu Yamane
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Kohei Yoshinaga
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Michinori Sumimoto
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
40
|
Wang J, Han J, Peng H, Tang X, Zhu J, Liao RZ, Xie X, Xue Z, Fliedel C, Poli R. Bromoalkyl ATRP initiator activation by inorganic salts: experiments and computations. Polym Chem 2019. [DOI: 10.1039/c9py00113a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bromoalkyl ATRP initiator EBrPA is activated by many alkali, alkaline-earth and ammonium salts, leading to MMA polymerization, but only the iodides yield a controlled process because of a degenerative transfer mechanism contribution.
Collapse
|
41
|
Lu YC, Chou LC, Huang CF. Iron-catalysed atom transfer radical polyaddition for the synthesis and modification of novel aliphatic polyesters displaying lower critical solution temperature and pH-dependent release behaviors. Polym Chem 2019. [DOI: 10.1039/c9py00506d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel aliphatic polyesters were synthesized and quantitatively modified by click reactions to obtain amphiphilic polymer brushes for nano-carrier applications.
Collapse
Affiliation(s)
- Yu-Chi Lu
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Li-Chieh Chou
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402
- Taiwan
| |
Collapse
|
42
|
García Vargas M, Mendoza Aquino G, Aguilar Lugo C, López Morales S, Torres González J, Le Lagadec R, Alexandrova L. Living radical polymerization of hydrophobic monomers catalyzed by cyclometalated ruthenium(II) complexes: Improved control and formation of block co-polymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Iwasaki M, Miki N, Ikemoto Y, Ura Y, Nishihara Y. Regioselective Synthesis of γ-Lactones by Iron-Catalyzed Radical Annulation of Alkenes with α-Halocarboxylic Acids and Their Derivatives. Org Lett 2018; 20:3848-3852. [PMID: 29889542 DOI: 10.1021/acs.orglett.8b01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An abundant and low toxicity iron catalyst has enabled regioselective annulation of alkenes with α-halocarboxylic acids and their derivatives. The reaction proceeds smoothly without any additional ligands, bases, and additives to afford a variety of γ-lactones in good yields. A proposed reaction pathway through radical annulation is supported by some mechanistic studies, involving radical clock and isotope labeling experiments. The present method was applied to the practical iron-powder-promoted synthesis of γ-lactones.
Collapse
Affiliation(s)
- Masayuki Iwasaki
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Natsumi Miki
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Yuichi Ikemoto
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Kitauoyanishi-machi, Nara 630-8506 , Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
44
|
Wang J, Tian M, Li S, Wang R, Du F, Xue Z. Ligand-free iron-based electrochemically mediated atom transfer radical polymerization of methyl methacrylate. Polym Chem 2018. [DOI: 10.1039/c8py00933c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reports the iron-catalyzed ligand-free eATRP.
Collapse
Affiliation(s)
- Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Mengying Tian
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Rui Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Feipeng Du
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
45
|
Vasu V, Kim JS, Yu HS, Bannerman WI, Johnson ME, Asandei AD. Normal, ICAR and photomediated butadiene-ATRP with iron complexes. Polym Chem 2018. [DOI: 10.1039/c8py00463c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FeX2 or FeX3 (X = Cl ≫ Br) alone or with P ≫ X > O > N > C ligands and bromoester initiators enable the successful ATRP of butadiene in toluene at 110 °C.
Collapse
Affiliation(s)
- Vignesh Vasu
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Joon-Sung Kim
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Hyun-Seok Yu
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - William I. Bannerman
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Mark E. Johnson
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Alexandru D. Asandei
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
46
|
Costa JRC, Góis JR, De Bon F, Serra AC, Guliashvili T, Isse AA, Gennaro A, Coelho JFJ. Addressing the role of triphenylphosphine in copper catalyzed ATRP. Polym Chem 2018. [DOI: 10.1039/c8py01245h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Atom Transfer Radical Polymerization (ATRP) process with triphenylphosphine (PPh3) and [CuIIMe6TREN]2+ as the catalyst system is reported.
Collapse
Affiliation(s)
- João R. C. Costa
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE)
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Joana R. Góis
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE)
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Francesco De Bon
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Arménio C. Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE)
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Tamaz Guliashvili
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE)
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| | - Abdirisak A. Isse
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Armando Gennaro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Jorge F. J. Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE)
- Department of Chemical Engineering
- University of Coimbra
- 3030-790 Coimbra
- Portugal
| |
Collapse
|
47
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
48
|
Taskin OS, Kiskan B, Yagci Y. An efficient, heterogeneous, reusable atom transfer radical polymerization catalyst. POLYM INT 2017. [DOI: 10.1002/pi.5485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Omer Suat Taskin
- Istanbul Technical University; Department of Chemistry; Istanbul Turkey
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| | - Baris Kiskan
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| | - Yusuf Yagci
- Istanbul University, Institute of Marine Science and Management; Chemical Oceanography; Istanbul Turkey
| |
Collapse
|
49
|
Guo JK, Zhou YN, Luo ZH. Iron-based electrochemically mediated atom transfer radical polymerization with tunable catalytic activity. AIChE J 2017. [DOI: 10.1002/aic.15978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jun-Kang Guo
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Yin-Ning Zhou
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Zheng-Hong Luo
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| |
Collapse
|
50
|
Dadashi-Silab S, Pan X, Matyjaszewski K. Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Levels of Iron Catalyst under Blue Light Irradiation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01708] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sajjad Dadashi-Silab
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
| | - Xiangcheng Pan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
| |
Collapse
|