1
|
Ragavi SP, Thirumalai D, Asharani IV. A Review on Small Organic Colorimetric and Fluorescent Hosts for the Detection of Cobalt and Nickel Ion. J Fluoresc 2024:10.1007/s10895-024-03807-5. [PMID: 38884827 DOI: 10.1007/s10895-024-03807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
In recent years, there has been a notable increase in efforts to advance efficient hosts for detecting cobalt and nickel ions, driven by their extensive industrial applications and environmental significance. This review meticulously examines the progress made in small organic colorimetric and fluorescent hosts tailored specifically for the sensitive and selective detection of cobalt and nickel ions. It delves into a diverse range of molecular architectures, including organic ligands, elucidating their unique attributes such as sensitivity, selectivity, and response time. Moreover, the review precisely explores the underlying principles governing the colorimetric and fluorescent mechanisms employed by these hosts, shedding light on the intricate interactions between the sensing moieties and the target metal ions. Furthermore, it critically evaluates the practical applicability of these hosts, considering crucial factors such as detection limits, recyclability, and compatibility with complex sample matrices. Additionally, exploration extends to potential challenges and prospects in the field, emphasizing the imperative for ongoing innovation to address emerging environmental and analytical demands. Eventually, through this comprehensive examination, the review seeks to contribute to the ongoing endeavor to develop robust and efficient tools for monitoring and detecting cobalt and nickel metal ions in diverse analytical scenarios.
Collapse
Affiliation(s)
- S P Ragavi
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumalai
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - I V Asharani
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Shukla AK, Mahale A, Choudhary S, Sharma P, Kulkarni OP, Bhattacharya A. Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release. Chembiochem 2024; 25:e202300783. [PMID: 38038368 DOI: 10.1002/cbic.202300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 μM (LOQ 6.8 μM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.
Collapse
Affiliation(s)
- Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Savita Choudhary
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
3
|
Dhawale SC, Munde AV, Mulik BB, Dighole RP, Zade SS, Sathe BR. CTAB-Assisted Synthesis of FeNi Alloy Nanoparticles: Effective and Stable Electrocatalysts for Urea Oxidation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2672-2685. [PMID: 38265983 DOI: 10.1021/acs.langmuir.3c03205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Development of highly efficient electrocatalysts for treating urea-rich wastewater is an important problem in environmental management and energy production. In this work, an iron-nickel alloy (Fe-Ni alloy) was synthesized via soft-template cetyltrimethylammonium bromide (CTAB)-assisted precipitation using low-temperature calcination. The as-synthesized nanoalloy was characterized by X-ray diffraction (XRD), which revealed the formation of a face-centered cubic (FCC) structure of the Fe-Ni alloy; field emission-scanning electron microscopic (FE-SEM) analysis revealed the spherical shape of the Fe-Ni alloy; high-resolution transmission electron microscopy (HR-TEM) revealed the average size to be ∼33.09 nm; and X-ray photoelectron spectroscopy (XPS) showed the presence of Fe, Ni, C, and O components and their chemical composition and valence states in the Fe-Ni alloy. The electrochemical urea oxidation reaction (UOR) was investigated by conducting linear sweep voltammetry (LSV) tests on the synthesized electrocatalysts with different Ni/Fe ratios in alkaline electrolytes with urea. The potential required to reach a current density of 10 mA cm-2 is 1.27 V vs RHE, which demonstrates the higher electrochemical activity of the Fe-Ni alloy compared to other individual compounds. This could be due to CTAB which improved the structural stability and synergetic and electronic effects in the nanoscale. This study will further contribute to renewable energy generation technology with long-term energy sustainability and also opens up great potential for reducing water pollution.
Collapse
Affiliation(s)
- Somnath C Dhawale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
| | - Ajay V Munde
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Indian Institute of Science Education and Research (IISER), Kolkata 741246, West Bengal, India
| | - Balaji B Mulik
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- MGM University, Chhatrapati Sambhajinagar 431001, Maharashtra, India
| | - Raviraj P Dighole
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Arts, Science & Commerce College, Badnapur, Jalna 431202, India
| | - Sanjio S Zade
- Indian Institute of Science Education and Research (IISER), Kolkata 741246, West Bengal, India
| | - Bhaskar R Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
- Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar 431004, Maharashtra, India
| |
Collapse
|
4
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
5
|
Christopher Leslee DB, Venkatachalam U, Gunasekaran J, Karuppannan S, Kuppannan SB. Synthesis of a quinoxaline-hydrazinobenzothiazole based probe-single point detection of Cu 2+, Co 2+, Ni 2+ and Hg 2+ ions in real water samples. Org Biomol Chem 2023; 21:4130-4143. [PMID: 37129970 DOI: 10.1039/d3ob00298e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel quinoxaline-hydrazinobenzothiazole based sensor was synthesized and characterized using NMR, FTIR, and Mass spectroscopy techniques. The sensor achieves the distinct "single-point" colorimetric and fluorescent detection of Cu2+, Co2+, Ni2+ and Hg2+ ions with distinguishable color changes from yellow to red, pale red, pale brown and orange, respectively. The UV-visible and fluorescence emission spectral investigation revealed the excellent single-point sensing ability of the probe towards four different heavy metal ions with a ratiometric response. Nanomolar levels of detection of about 1.16 × 10-7 M, 9.92 × 10-8 M, 8.21 × 10-8 M, and 1.14 × 10-7 M for Cu2+, Co2+, Ni2+ and Hg2+ ions, respectively, were achieved using our sensor, which are below the US-EPA permissible limits. Additionally, the sensor was utilized for naked eye detection under normal daylight. Quantitative determination of the metal ions in real water samples was also demonstrated.
Collapse
Affiliation(s)
- Denzil Britto Christopher Leslee
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Udhayadharshini Venkatachalam
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Jayapratha Gunasekaran
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| | - Sekar Karuppannan
- Department of Science and Humanities (Chemistry), Anna University - University College of Engineering, Dindigul - 624622, Tamil Nadu, India
| | - Shanmuga Bharathi Kuppannan
- Department of Chemistry, School of Physical Sciences, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India.
| |
Collapse
|
6
|
Vievard J, Alem A, Pantet A, Ahfir ND, Arellano-Sánchez MG, Devouge-Boyer C, Mignot M. Bio-Based Adsorption as Ecofriendly Method for Wastewater Decontamination: A Review. TOXICS 2023; 11:toxics11050404. [PMID: 37235220 DOI: 10.3390/toxics11050404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Intense human activities have for years contributed to the pollution of the environment by many dangerous pollutants such as heavy metals, pesticides, or polycyclic aromatic hydrocarbons. There are many conventional methods used to control pollution, with practical and/or financial drawbacks. Therefore, in recent years, an innovative, easy-to-implement and inexpensive adsorption method has been developed to recover waste and clean up water from micropollutants. Firstly, this article aims to summarize the issues related to water remediation and to understand the advantages and disadvantages of the methods classically used to purify water. In particular, this review aims to provide a recent update of the bio-based adsorbents and their use. Differently from the majority of the reviews related to wastewater treatment, in this article several classes of pollutants are considered. Then, a discussion about the adsorption process and interactions involved is provided. Finally, perspectives are suggested about the future work to be done in this field.
Collapse
Affiliation(s)
- Juliette Vievard
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Abdellah Alem
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Anne Pantet
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Nasre-Dine Ahfir
- University Le Havre Normandie, UNIHAVRE, UMR 6294 CNRS, LOMC, 76600 Le Havre, France
| | - Mónica Gisel Arellano-Sánchez
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Christine Devouge-Boyer
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| | - Mélanie Mignot
- University Rouen Normandie, UNIROUEN, COBRA UMR CNRS 6014, INSA, Avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France
| |
Collapse
|
7
|
Joy BP, Paul S, Manohar BG, Gudimetla VB. Benzilbis(2-hydroxyanil) – highly efficient ligand for ferric ion (Fe 3+) sensing. NEW J CHEM 2023. [DOI: 10.1039/d2nj05178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Benzilbis(2-hydroxyanil) was found to be an efficient and selective turn-on fluorophore for ferric ion (Fe3+) sensing.
Collapse
Affiliation(s)
- Bony Pariyadan Joy
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| | - Sudeep Paul
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| | - Basavaraju Gari Manohar
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| | - Vittal Babu Gudimetla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India
| |
Collapse
|
8
|
Gauri, Kumar D, Kaur N. Rigid anthraquinone based sensor for dual and differential colorimetric detection of Cu2+ and Ni2+ ions: Mimicking different molecular logic systems. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Chakraborty S, Rayalu S. Detection of nickel by chemo and fluoro sensing technologies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118915. [PMID: 32971347 DOI: 10.1016/j.saa.2020.118915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 05/13/2023]
Abstract
Sensing technology for heavy metal detection is very crucial for recent decades as the detection method is very easy, rapid, and does not require any pre-treatment of the sample. Nickel is a trace element in the human body and basically a moderate toxic element. There is a limited number of chemo and fluoro sensors reported for nickel as compared to other transition metal ion. Therefore, there is a need for the detailed structure and property studies of the nickel-probes as the knowledge can help in the upcoming development of probes for the nickel. In this review, we have discussed about different colorimetric, fluorimetric and fluorescent chemosensor and their structure, characterization, detection limit, association constant, media, and bio-imaging studies if they are active.
Collapse
Affiliation(s)
- Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
10
|
Quinoxaline-based chromogenic and fluorogenic chemosensors for the detection of metal cations. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01484-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Song JY, Wang ZC, Zhang ZQ. Crystal structure of (E)-2-(3,6-bis(diethylamino)-9H-xanthen-9-yl)-N′-(quinoxalin-2-ylmethylene)benzohydrazide, C37H36N6O2. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC37H36N6O2, monoclinic, P21/c (no. 14), a = 9.18664(12) Å, b = 14.50209(16) Å, c = 23.1787(3) Å, β = 94.0829(12)°, Z = 4, V = 3080.16(7) Å3, Rgt(F) = 0.0398, wRref(F2) = 0.1041, T = 113.5(4) K.
Collapse
Affiliation(s)
- Jun-Ying Song
- Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China
| | - Zi-Chuang Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China
| | - Zhen-Qiang Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China
| |
Collapse
|
12
|
Bag R, Sikdar Y, Sahu S, Saha P, Bag J, Pal K, Goswami S. A quinoxaline-diaminomaleonitrile conjugate system for colorimetric detection of Cu 2+ in 100% aqueous medium: observation of aldehyde to acid transformation. Dalton Trans 2019; 48:5656-5664. [PMID: 30968912 DOI: 10.1039/c9dt00670b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we have strategically incorporated a quinoxaline derivative and a diaminomaleonitrile moiety to construct a chemosensor, 2-amino-3-[(quinoxalin-2-ylmethylene)-amino]-but-2-enedinitrile (H2qm). The notable feature of this strategy is to generate a highly conjugated Schiff base platform with interesting binding properties. Remarkably, H2qm exhibited a visual sensing ability towards Cu2+ in 100% aqueous medium. The effectiveness of the chemosensor has been demonstrated by utilizing it to determine the Cu2+ concentration in real samples. Interestingly, the reaction between H2qm and Cu(ClO4)2·6H2O in DMSO yielded a quinoxaline-2-carboxylic acid based compound and single crystal X-ray diffraction analysis unveiled the resulting structure as [(qa)2Cu(H2O)2] (Hqa = quinoxaline-2-carboxylic acid).
Collapse
Affiliation(s)
- Riya Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
Das M, Sarkar M. Bis‐Pyridyl Diimines as Selective and Ratiometric Chemosensor for Ni(II) and Cd(II) Metal Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201802924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Moyna Das
- Department of ChemistryBirla Institute of Technology and Science, PilaniPilani Campus, Rajasthan India
| | - Madhushree Sarkar
- Department of ChemistryBirla Institute of Technology and Science, PilaniPilani Campus, Rajasthan India
| |
Collapse
|
14
|
Ozhukil Kollath V, Derakhshandeh M, Mayer FD, Mudigonda T, Islam MN, Trifkovic M, Karan K. Fluorescent polycatecholamine nanostructures as a versatile probe for multiphase systems. RSC Adv 2018; 8:31967-31971. [PMID: 35547475 PMCID: PMC9085718 DOI: 10.1039/c8ra05372c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 11/21/2022] Open
Abstract
Shape and size controlled nanostructures are critical for nanotechnology and have versatile applications in understanding interfacial phenomena of various multi-phase systems. Facile synthesis of fluorescent nanostructures remains a challenge from conventional precursors. In this study, bio-inspired catecholamines, dopamine (DA), epinephrine (EP) and levodopa (LDA), were used as precursors and fluorescent nanostructures were synthesized via a simple one pot method in a water-alcohol mixture under alkaline conditions. DA and EP formed fluorescent spheres and petal shaped structures respectively over a broad spectrum excitation wavelength, whereas LDA did not form any particular structure. However, the polyepinephrine (PEP) micropetals were formed by weaker interactions as compared to covalently linked polydopamine (PDA) nanospheres, as revealed by NMR studies. Application of these fluorescent structures was illustrated by their adsorption behavior at the oil/water interface using laser scanning confocal microscopy. Interestingly, PDA nanospheres showed complete coverage of the oil/water interface despite its hydrophilic nature, as compared to hydrophobic PEP micropetals which showed a transient coverage of the oil/water interface but mainly self-aggregated in the water phase. The reported unique fluorescent organic structures will play a key role in understanding various multi-phase systems used in aerospace, biomedical, electronics and energy applications.
Collapse
Affiliation(s)
- Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Maziar Derakhshandeh
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Francis D Mayer
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Thanmayee Mudigonda
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Muhammad Naoshad Islam
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
15
|
Selective colorimetric sensing of nickel (II) ions using 2-hydroxy-5-nitrobenzaldehyde-4-hydroxybenzoylhydrazone ligand: Spectroscopic and DFT insights. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Chakraborty S, Goswami S, Quah CK, Pakhira B. Sensing study of quinoxaline analogues with theoretical calculation, single-crystal X-ray structure and real application in commercial fruit juices. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180149. [PMID: 30110468 PMCID: PMC6030317 DOI: 10.1098/rsos.180149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Single-crystal X-ray structures of dimeric quinoxaline aldehyde (QA), quinoxaline dihydrazone (DHQ) and HQNM (Goswami S et al. 2013 Tetrahedron Lett.54, 5075-5077. (doi:10.1016/j.tetlet.2013.07.051); Goswami S et al. 2014 RSC Adv.4, 20 922-20 926. (doi:10.1039/C4RA00594E); Goswami S et al. 2014 New J. Chem.38, 6230-6235. (doi:10.1039/C4NJ01498G)) are reported along with the theoretical study. Among them, QA is not acting as an active probe, but DHQ and HQNM are serving as selective and sensitive probe for the Fe3+ cation and the Ni2+ cation, respectively. DHQ can also detect the Fe3+ in commercial fruit juices (grape and pomegranate).
Collapse
Affiliation(s)
- Shampa Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Shyamaprosad Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Bholanath Pakhira
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
17
|
Homocianu M, Ipate AM, Homocianu D, Airinei A, Hamciuc C. Effects of solvating media of some phenylquinoxaline derivatives on their photophysical properties. Mixed solvent systems and acidic media. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2496-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Sheikh TA, Arshad MN, Rahman MM, Asiri AM, Marwani HM, Awual MR, Bawazir WA. Trace electrochemical detection of Ni2+ ions with bidentate N,N′-(ethane-1,2-diyl)bis(3,4-dimethoxybenzenesulfonamide) [EDBDMBS] as a chelating agent. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J. A Schiff's base receptor for red fluorescence live cell imaging of Zn2+ ions in zebrafish embryos and naked eye detection of Ni2+ ions for bio-analytical applications. J Mater Chem B 2017; 5:3195-3200. [DOI: 10.1039/c7tb00011a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A quinoline based chemosensor for dual detection of Ni2+/Zn2+ ions and its bio-analytical applications.
Collapse
Affiliation(s)
- A. Senthil Murugan
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-21
- India
| | - N. Vidhyalakshmi
- Department of Molecular Biology
- School of biological Sciences
- Madurai Kamaraj University
- Madurai-21
- India
| | - U. Ramesh
- Department of Molecular Biology
- School of biological Sciences
- Madurai Kamaraj University
- Madurai-21
- India
| | - J. Annaraj
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-21
- India
| |
Collapse
|
21
|
A new click-derived tripodal receptor for fluorescence recognition of Ni2+ in aqueous solution. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Kim S, Jo J, Lee D. Conformationally Distorted π-Conjugation for Reaction-Based Detection of Nickel: Fluorescence Turn-on by Twist-and-Fragment. Org Lett 2016; 18:4530-3. [DOI: 10.1021/acs.orglett.6b02140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seyong Kim
- Department
of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junyong Jo
- Process
and Analytical Chemistry, Merck Research Laboratories, 126 East
Lincoln Avenue, Rahway, New
Jersey 07065, United States
| | - Dongwhan Lee
- Department
of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
23
|
A highly selective chemosensor for nickel(II) based on fluorescence quenching of a bispyrazole derivative. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2621-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Dar AA, Hussain S, Dutta D, Iyer PK, Khan AT. One-pot synthesis of functionalized 4-hydroxy-3-thiomethylcoumarins: detection and discrimination of Co2+ and Ni2+ ions. RSC Adv 2015. [DOI: 10.1039/c5ra09152g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A variety of 4-hydroxy-3-thiomethylcoumarin derivatives were synthesized via a one-pot three-component reaction catalysed by l-proline at room temperature. One of the derivative was used as fluorescence probe to monitor and distinguish Co2+ and Ni2+.
Collapse
Affiliation(s)
- Ajaz A. Dar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Sameer Hussain
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Debasish Dutta
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Parameswar K. Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
- Aliah University
| |
Collapse
|
25
|
Zhang I, Wang Y, Wan C, Xing Z, Li W, Li M, Zhang SXA. A new rhodamine based chemodosimeter for Ni2+ with high sensitivity and selectivity. RSC Adv 2015. [DOI: 10.1039/c5ra11737b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new spirocyclic rhodamine derivative for colorimetric sensing of Ni2+.
Collapse
Affiliation(s)
- Ivan Zhang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Yi Wang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Chao Wan
- College of Environment and Resources
- Jilin University
- People's Republic of China
| | - Zhen Xing
- College of Life of Science
- Jilin University
- People's Republic of China
| | - Wen Li
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- People's Republic of China
| |
Collapse
|