• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643497)   Today's Articles (96)   Subscriber (50551)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Liu X, Zhu Z. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024;11:e2306533. [PMID: 38148424 PMCID: PMC10953593 DOI: 10.1002/advs.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Indexed: 12/28/2023]
2
Montejano‐Nares E, Ivars‐Barceló F, Osman SM, Luque R. Modeling and Thermodynamic Studies of γ-Valerolactone Production from Bio-derived Methyl Levulinate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023;7:2200208. [PMID: 37020618 PMCID: PMC10069308 DOI: 10.1002/gch2.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Indexed: 06/19/2023]
3
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023;123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
4
Mallette AJ, Hong S, Freeman EE, Saslow SA, Mergelsberg S, Motkuri RK, Neeway JJ, Mpourmpakis G, Rimer JD. Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation. JACS AU 2022;2:2295-2306. [PMID: 36311839 PMCID: PMC9597603 DOI: 10.1021/jacsau.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
5
Saengsen C, Sookbampen O, Wu S, Seetasang S, Rongwong W, Chuaboon L. The potency of HPLC-DAD and LC-MS/MS combined with ion chromatography for detection/purification of levulinic acid and bio-compounds from acid hydrolysis of OPEFB. RSC Adv 2022;12:28638-28646. [PMID: 36320499 PMCID: PMC9539635 DOI: 10.1039/d2ra03563d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]  Open
6
2,5-Dimethylfuran Production by Catalytic Hydrogenation of 5-Hydroxymethylfurfural Using Ni Supported on Al2O3-TiO2-ZrO2 Prepared by Sol-Gel Method: The Effect of Hydrogen Donors. Molecules 2022;27:molecules27134187. [PMID: 35807429 PMCID: PMC9268021 DOI: 10.3390/molecules27134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022]  Open
7
Zirconyl chloride and its uses in phosphorus chemistry. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
8
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H2 donor: a critical review. RSC Adv 2022;12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]  Open
9
Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
10
Zhang H, Samsudin IB, Jaenicke S, Chuah GK. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Liu Y, Liu X, Li M, Meng Y, Li J, Zhang Z, Zhang H. Recyclable Zr/Hf-Containing Acid-Base Bifunctional Catalysts for Hydrogen Transfer Upgrading of Biofuranics: A Review. Front Chem 2021;9:812331. [PMID: 34993179 PMCID: PMC8724202 DOI: 10.3389/fchem.2021.812331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]  Open
12
Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Brønsted acid sites. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
13
Li J, Zhao S, Li Z, Liu D, Chi Y, Hu C. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Inorg Chem 2021;60:7785-7793. [PMID: 33755456 DOI: 10.1021/acs.inorgchem.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
14
Liu X, Lan G, Li Z, Qian L, Liu J, Li Y. Stabilization of heterogeneous hydrogenation catalysts for the aqueous-phase reactions of renewable feedstocks. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
15
Zhu Z, Yang L, Ke C, Fan G, Yang L, Li F. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO2 with abundant surface acid-base sites. Dalton Trans 2021;50:2616-2626. [PMID: 33522543 DOI: 10.1039/d0dt00055h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00411a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
17
Li X, Yuan X, Xia G, Liang J, Liu C, Wang Z, Yang W. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
18
Jiao M, Huang J, Xu H, Jiang J, Guan Y, Ma Y, Wu P. ECNU-36: A Quasi-Pure Polymorph CH Beta Silicate Composed of Hierarchical Nanosheet Crystals for Effective VOCs Adsorption. Angew Chem Int Ed Engl 2020;59:17291-17296. [PMID: 32558185 DOI: 10.1002/anie.202008327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 11/11/2022]
19
Jiao M, Huang J, Xu H, Jiang J, Guan Y, Ma Y, Wu P. ECNU‐36: A Quasi‐Pure Polymorph C H Beta Silicate Composed of Hierarchical Nanosheet Crystals for Effective VOCs Adsorption. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
20
Lu Y, Wang Y, Wang Y, Cao Q, Xie X, Fang W. Hydrogenation of levulinic acid to γ-valerolactone over bifunctional Ru/(AlO)(ZrO) catalyst: Effective control of Lewis acidity and surface synergy. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
21
Lattice distorted MnCo oxide materials as efficient catalysts for transfer hydrogenation of levulinic acid using formic acid as H-donor. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
22
Hsiao CY, Chiu HY, Lin TY, Lin KYA. A comparative study on microwave-assisted catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using Ru/C, Pt/C, and Pd/C. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1791833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
23
Li W, Li F, Chen J, Betancourt LE, Tu C, Liao M, Ning X, Zheng J, Li R. Efficient and Sustainable Hydrogenation of Levulinic Acid to γ-Valerolactone in Aqueous Phase over Ru/MCM-49 Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
24
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C2-C6 Platform Chemicals Derived from Biomass. Chem Rev 2020;120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
25
Wang K, Heltzel J, Sandefur E, Culley K, Lemcoff G, Voutchkova-Kostal A. Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
26
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020;13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
27
Yu Z, Lu X, Bai H, Xiong J, Feng W, Ji N. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ‐Valerolactone: Catalytic Activity and Stability. Chem Asian J 2020;15:1182-1201. [DOI: 10.1002/asia.202000006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/31/2020] [Indexed: 11/06/2022]
28
Wang Y, Huang J, Lu S, Li P, Xia X, Li C, Li F. Phosphorus-modified zirconium metal organic frameworks for catalytic transfer hydrogenation of furfural. NEW J CHEM 2020. [DOI: 10.1039/d0nj04285d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Kumaravel S, Thiripuranthagan S, Durai M, Erusappan E, Vembuli T. Catalytic transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Sn/Al-SBA-15 catalysts. NEW J CHEM 2020. [DOI: 10.1039/d0nj01288b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
30
Martín N, Cirujano FG. Organic synthesis of high added value molecules with MOF catalysts. Org Biomol Chem 2020;18:8058-8073. [PMID: 33001113 DOI: 10.1039/d0ob01571g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
31
Kots PA, Zabilska AV, Ivanova II. Selective Self‐Condensation of Butanal over Zr‐BEA Zeolites. ChemCatChem 2019. [DOI: 10.1002/cctc.201901556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
32
Son PA, Hoang DH, Canh KT. The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219090179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
33
Transfer hydrogenation of furfural to furfuryl alcohol over Keggin zirconium-heteropoly acid. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Zhang H, Yang W, Roslan II, Jaenicke S, Chuah GK. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
35
Liu M, Li S, Fan G, Yang L, Li F. Hierarchical Flower-like Bimetallic NiCu catalysts for Catalytic Transfer Hydrogenation of Ethyl Levulinate into γ-Valerolactone. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. J Colloid Interface Sci 2019;543:52-63. [DOI: 10.1016/j.jcis.2019.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022]
37
Sakakibara K, Endo K, Osawa T. Facile synthesis of γ-valerolactone by transfer hydrogenation of methyl levulinate and levulinic acid over Ni/ZrO2. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]  Open
38
Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Catal Letters 2019. [DOI: 10.1007/s10562-019-02790-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
39
Lin TY, Lin KYA. Microwave-enhanced catalytic transfer hydrogenation of levulinic acid to γ-valerolactone using zirconium-based metal organic frameworks: A comparative study with conventional heating processes. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
40
Direct Conversion of Levulinic Acid into Valeric Biofuels Using Pd Supported Over Zeolites as Catalysts. Top Catal 2019. [DOI: 10.1007/s11244-019-01147-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
41
Li G, Gao L, Sheng Z, Zhan Y, Zhang C, Ju J, Zhang Y, Tang Y. A Zr-Al-Beta zeolite with open Zr(iv) sites: an efficient bifunctional Lewis–Brønsted acid catalyst for a cascade reaction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00853e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Gérardy R, Morodo R, Estager J, Luis P, Debecker DP, Monbaliu JCM. Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Top Curr Chem (Cham) 2018;377:1. [DOI: 10.1007/s41061-018-0222-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/27/2018] [Indexed: 12/16/2022]
43
Zhou YH, Luo YJ, Lin YT, Huang YB. Enhanced Transfer Hydrogenation Activity of Zr-Doped Mesoporous Silica through Sol-Gel Method for the Reduction of Biomass-Derived Unsaturated Carbon-Oxygen Bonds. ChemistrySelect 2018. [DOI: 10.1002/slct.201802176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
44
Ponnuru K, Manayil JC, Cho HJ, Osatiashtiani A, Fan W, Wilson K, Jentoft FC. Tuning solid catalysts to control regioselectivity in cross aldol condensations with unsymmetrical ketones for biomass conversion. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
45
Zhang H, Lim CLF, Zaki M, Jaenicke S, Chuah GK. A Dual-Functional Catalyst for Cascade Meerwein-Pondorf-Verley Reduction and Dehydration of 4'-Methoxypropiophenone to Anethole. CHEMSUSCHEM 2018;11:3007-3017. [PMID: 29927044 DOI: 10.1002/cssc.201801340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/08/2023]
46
Xu C, Ouyang W, Muñoz-Batista MJ, Fernández-García M, Luque R. Highly Active Catalytic Ruthenium/TiO2 Nanomaterials for Continuous Production of γ-Valerolactone. CHEMSUSCHEM 2018;11:2604-2611. [PMID: 29808554 DOI: 10.1002/cssc.201800667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Indexed: 06/08/2023]
47
Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts 2018. [DOI: 10.3390/catal8080313] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
48
Scotti N, Zaccheria F, Bisio C, Vittoni C, Ravasio N. Switching Selectivity in the Hydrogen Transfer Reduction of Furfural. ChemistrySelect 2018. [DOI: 10.1002/slct.201801974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
49
Li F, Li Z, France LJ, Mu J, Song C, Chen Y, Jiang L, Long J, Li X. Highly Efficient Transfer Hydrogenation of Levulinate Esters to γ-Valerolactone over Basic Zirconium Carbonate. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Wang J, Wang R, Zi H, Wang H, Xia Y, Liu X. A porous inorganic zirconyl pyrophosphate as an efficient catalyst for the catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA