1
|
Akpinar I, Wang X, Fahy K, Sha F, Yang S, Kwon TW, Das PJ, Islamoglu T, Farha OK, Stoddart JF. Biomimetic Mineralization of Large Enzymes Utilizing a Stable Zirconium-Based Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5108-5117. [PMID: 38367279 DOI: 10.1021/jacs.3c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).
Collapse
Affiliation(s)
- Isil Akpinar
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Xiaoliang Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kira Fahy
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Fanrui Sha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tae-Woo Kwon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215, China
| |
Collapse
|
2
|
Tai T, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure–Property Relationships of Protein Immobilization in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202209110. [DOI: 10.1002/anie.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu‐Yi Tai
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Satoshi Kato
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
3
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Tai TY, Sha F, Wang X, Wang X, Ma K, Kirlikovali KO, Su S, Islamoglu T, Kato S, Farha OK. Leveraging Isothermal Titration Calorimetry to Explore Structure‐Property Relationships of Protein Immobilization in Metal‐Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tzu-Yi Tai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Fanrui Sha
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xiaoliang Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Xingjie Wang
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kaikai Ma
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Kent O. Kirlikovali
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Shengyi Su
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Timur Islamoglu
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Satoshi Kato
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Omar K Farha
- Northwestern University Chemistry 2145 sheridan rd 60208 Evanston UNITED STATES
| |
Collapse
|
5
|
Gao R, Zhong N, Huang S, Li S, Chen G, Ouyang G. Multienzyme Biocatalytic Cascade Systems in Porous Organic Frameworks for Biosensing. Chemistry 2022; 28:e202200074. [DOI: 10.1002/chem.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Ningyi Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| | - Shuocong Li
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences Guangzhou 510316 China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
6
|
Huang W, Huang S, Chen G, Ouyang G. Biocatalytic Metal-Organic Framework: Promising Materials for Biosensing. Chembiochem 2022; 23:e202100567. [PMID: 35025113 DOI: 10.1002/cbic.202100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The high-efficient and specific catalysis of enzyme allow it to recognize a myriad of substrate that impels the biosensing. Nevertheless, the fragility of natural enzymes severely restricts their practical applications. Metal-organic frameworks (MOFs) with porous network and attractive functions have been intelligently employed as supports to encase enzymes for protecting them against hash environments. More importantly, the customizable construction and composition affords the intrinsic enzyme-like activity of some MOFs (known as nanozymes), which provides an alternative guideline to construct robust enzymes mimics. Herein, this review will introduce the concept of these biocatalytic MOFs, with the special emphasis on how the biocatalytic processes operated in these MOFs materials can reverse the plight of native enzymes-based biosensing. In addition, the present challenges and future outlooks in this research field are briefly put forward.
Collapse
Affiliation(s)
- Wei Huang
- Sun Yat-Sen University, School of Chemical Engineering and Technology, CHINA
| | - Siming Huang
- Guangzhou Medical University, School of pharmaceutical sciences, CHINA
| | - Guosheng Chen
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China, 510275, Guangzhou, CHINA
| | | |
Collapse
|
7
|
Peng L, Tan W, Lu Y, Yao A, Zheng D, Li L, Xiao J, Li L, Li Q, Zhou S, Zhan G. Convenient Immobilization of α‐L‐Rhamnosidase on Cerium‐based Metal‐Organic Frameworks Nanoparticles for Enhanced Enzymatic Activity and Recyclability. ChemCatChem 2021. [DOI: 10.1002/cctc.202101489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lingling Peng
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Wansen Tan
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Yuting Lu
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Ayan Yao
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Dayuan Zheng
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Le Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Jingran Xiao
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Lijun Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province Xiamen Fujian 361021 P. R. China
| | - Qingbiao Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Shu‐feng Zhou
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Guowu Zhan
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
8
|
Ye N, Kou X, Shen J, Huang S, Chen G, Ouyang G. Metal-Organic Frameworks: A New Platform for Enzyme Immobilization. Chembiochem 2020; 21:2585-2590. [PMID: 32291902 DOI: 10.1002/cbic.202000095] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) with attractive properties such as high surface area, tunable porosity, designable functionality and excellent stability, have aroused great interest from researchers as the matrices for enzyme immobilization. Recently, several efficient strategies including surface immobilization, post-synthetic infiltration and in situ encapsulation have been explored. MOF-immobilized enzymes, named enzymes@MOFs, show remarkably enhanced stability and recyclability, accelerating cell-free biocatalysis in diverse applications. This concept will impart the typical strategies for enzyme immobilization with MOFs, and their potential applications.
Collapse
Affiliation(s)
- Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Guo J, Yang L, Gao Z, Zhao C, Mei Y, Song YY. Insight of MOF Environment-Dependent Enzyme Activity via MOFs-in-Nanochannels Configuration. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00591] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
10
|
Lauerer A, Kurzhals R, Toufar H, Freude D, Kärger J. Tracing compartment exchange by NMR diffusometry: Water in lithium-exchanged low-silica X zeolites. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:1-11. [PMID: 29438825 DOI: 10.1016/j.jmr.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The two-region model for analyzing signal attenuation in pulsed field gradient (PFG) NMR diffusion studies with molecules in compartmented media implies that, on their trajectory, molecules get from one region (one type of compartment) into the other one with a constant (i.e. a time-invariant) probability. This pattern has proved to serve as a good approach for considering guest diffusion in beds of nanoporous host materials, with the two regions ("compartments") identified as the intra- and intercrystalline pore spaces. It is obvious, however, that the requirements of the application of the two-region model are not strictly fulfilled given the correlation between the covered diffusion path lengths in the intracrystalline pore space and the probability of molecular "escape" from the individual crystallites. On considering water diffusion in lithium-exchanged low-silica X zeolite, we are now assuming a different position since this type of material is known to offer "traps" in the trajectories of the water molecules. Now, on attributing the water molecules in the traps and outside of the traps to these two types of regions, we perfectly comply with the requirements of the two-region model. We do, moreover, benefit from the option of high-resolution measurements owing to the combination of magic angle spinning (MAS) with PFG NMR. Data analysis via the two-region model under inclusion of the influence of nuclear magnetic relaxation yields satisfactory agreement between experimental evidence and theoretical estimates. Limitations in accuracy are shown to result from the fact that mass transfer outside of the traps is too complicated for being adequately reflected by simple Fick's laws with but one diffusivity.
Collapse
Affiliation(s)
- A Lauerer
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany; Hof University of Applied Sciences, Alfons-Goppel-Platz 1, 95028 Hof, Germany
| | - R Kurzhals
- Clariant Produkte (Deutschland) GmbH, Chemiepark Bitterfeld-Wolfen, Tricat-Straße, 06803 Bitterfeld-Wolfen, Germany
| | - H Toufar
- Clariant Produkte (Deutschland) GmbH, Chemiepark Bitterfeld-Wolfen, Tricat-Straße, 06803 Bitterfeld-Wolfen, Germany
| | - D Freude
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - J Kärger
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Ferreira ASD, Barreiros S, Cabrita EJ. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:452-463. [PMID: 26987451 DOI: 10.1002/mrc.4427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (Dfast ) associated with interparticle diffusion and another with slow diffusion (Dslow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the Dfast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the Dslow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana S D Ferreira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Centro de Química Estrutural, Instituto Superior Técnico, Lisboa, Portugal
| | - Susana Barreiros
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
12
|
|
13
|
|