1
|
Malik R, Khatri K, Saxena R, Warkar SG. Fabrication of carboxymethyl tamarind kernel gum-based hydrogel and its applicability in different types of soils for agronomy. Int J Biol Macromol 2024; 280:135616. [PMID: 39278432 DOI: 10.1016/j.ijbiomac.2024.135616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
An avant-garde agricultural hydrogel - Carboxymethyl tamarind kernel gum-poly sodium acrylate-polyacrylamide hydrogel was designed by free-radical polymerization of biopolymer: carboxy-methyl tamarind kernel gum and monomers: sodium acrylate, acrylamide, using N,N' methylene bisacrylamide as crosslinker and potassium persulphate as initiator, to explore its application as a soil conditioner. It was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric techniques. Swelling was investigated at different pH and in saline solutions. The fabricated hydrogel absorbed 189 ml/g of distilled water. Minimal 0.1 % hydrogel-amended different soils unveiled an upswing in maximum water holding capacity: Sandy soil (43%), Clay soil (31 %), Silty soil (29 %) & Loamy soil (9 %).; decrease in porosity: Sandy (29 %) > Loamy (15.2 %) > Silty (6 %) > Clay (5.9 %), increase in available water content: Clay soil (17.52 %), Silty (13.45 %), Loamy soil (9.416 %), Sandy soil (10.375 %); increase in bulk density: Clay (1.7 %), Silty (5.3 %), Loamy (10 %) and Sandy (13%) as compared to control sample. These sequels were corroborated by water retention capacity in chickpea plants. The designed hydrogel, as a soil conditioner, was commendable in all types of soils but is worth applying in sandy and loamy soils. This hydrogel richly assists as a soil conditioner and boosts plant performance in a green eco-friendly way.
Collapse
Affiliation(s)
- Ritu Malik
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India
| | - Khushbu Khatri
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, -110007, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, -110042, India.
| |
Collapse
|
2
|
Sarhan N, Arafa EG, Elgiddawy N, Elsayed KNM, Mohamed F. Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers. Sci Rep 2024; 14:15032. [PMID: 38951590 PMCID: PMC11217492 DOI: 10.1038/s41598-024-58875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 07/03/2024] Open
Abstract
In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.
Collapse
Affiliation(s)
- Nada Sarhan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Esraa G Arafa
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt.
| | - Nada Elgiddawy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62 511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
3
|
Tanwar M, Gupta RK, Rani A. Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Crit Rev Biotechnol 2024; 44:275-301. [PMID: 36683015 DOI: 10.1080/07388551.2022.2157702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2023]
Abstract
The hydrogels based on natural gums and chemically derivatized natural gums have great interest in pharmaceutical, food, cosmetics, and environmental remediation, due to their: economic viability, sustainability, nontoxicity, biodegradability, and biocompatibility. Since these natural gems are from plants, microorganisms, and seaweeds, they offer a great opportunity to chemically derivatize and modify into novel, innovative biomaterials as scaffolds for tissue engineering and drug delivery. Derivatization improves swelling properties, thereby developing interest in agriculture and separating technologies. This review highlights the work done over the past three and a half decades and the possibility of developing novel materials and technologies in a cost-effective and sustainable manner. This review has compiled various natural gums, their source, chemical composition, and chemically derivatized gums, various methods to synthesize hydrogel, and their applications in biomedical, food and agriculture, textile, cosmetics, water purification, remediation, and separation fields.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Archna Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
4
|
Jabeen S, Alam S, Shah LA, Zahoor M, Naveed Umar M, Ullah R. Novel hydrogel poly (GG- co-acrylic acid) for the sorptive removal of the color Rhodamine-B from contaminated water. Heliyon 2023; 9:e19780. [PMID: 37809951 PMCID: PMC10559120 DOI: 10.1016/j.heliyon.2023.e19780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Textile effluent's treatment is highly desired due to the presence of hazardous, water-soluble and non-biodegradable dyes that not only have harmful effect on the environment but on living beings as well. Treatment of these pollutants by sorption through biosorbents is considered to be a best method of choice due to greener nature of the processes. In this connection hydrogel sorbents might be an intriguing option due to its straightforward application, great efficacy, easy synthesis, rapid turnaround, and potential of recycling. Herein, novel hydrogel was prepared using Gellan Gum and acrylic acid (GG-co-AAc) which were then characterized by instrumental techniques like UV/visible and FTIR spectroscopy, SEM, EDX and XRD. The anionic hydrogel's adsorption capacity, swelling behavior, and sorption potential were determined using Rhodamine-B as potential environmental pollutant. The hydrogel exhibited an impressive adsorption capacity of 1250 mg/g. Swelling experiments were performed in Milli-Q distilled water at different pH levels, reaching maximum swelling of 3230% after 23 h as determined through Fickian diffusion. At pH 7, the anionic hydrogel's sorption potential was thoroughly studied in the subsequent experiments. The adsorption process was found to follow the Langmuir isotherm, indicating a monolayer adsorption mechanism supported by higher R2 values compared to the Freundlich isotherm. Thermodynamic analysis revealed the exothermic nature of the adsorption process, with a negative enthalpy value of -11371 KJmol-1 and negative entropy value of -26.39 Jmol-1K-1, suggesting a less ordered system. These findings provide valuable insights into the adsorption characteristics and potential applications of the synthesized anionic hydrogel.
Collapse
Affiliation(s)
- Salma Jabeen
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, KPK, 18800, Pakistan
| | - Sultan Alam
- Department of Chemistry, University of Malakand, Chakdara Dir Lower, KPK, 18800, Pakistan
| | - Luqman Ali Shah
- National Center of Excellence in Physical Chemistry (NCE), University of Peshawar, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower, KPK, 18800, Pakistan
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Ajaz N, Bukhsh M, Kamal Y, Rehman F, Irfan M, Khalid SH, Asghar S, Rizg WY, Bukhary SM, Hosny KM, Alissa M, Safhi AY, Sabei FY, Khan IU. Development and evaluation of pH sensitive semi-interpenetrating networks: assessing the impact of itaconic acid and aloe vera on network swelling and cetirizine release. Front Bioeng Biotechnol 2023; 11:1173883. [PMID: 37229490 PMCID: PMC10203566 DOI: 10.3389/fbioe.2023.1173883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are crosslinked three-dimensional networks, and their properties can be easily tuned to target the various segments of the gastrointestinal tract (GIT). Cetirizine HCl (CTZ HCl) is an antihistaminic drug, which when given orally can upset the stomach. Moreover, this molecule has shown maximum absorption in the intestine. To address these issues, we developed a pH-responsive semi-interpenetrating polymer network (semi-IPN) for the delivery of CTZ HCl to the lower part of the GIT. Initially, 10 different formulations of itaconic acid-grafted-poly (acrylamide)/aloe vera [IA-g-poly (AAm)/aloe vera] semi-IPN were developed by varying the concentration of IA and aloe vera using the free radical polymerization technique. Based on swelling and sol-gel analysis, formulation F5 containing 0.3%w/w aloe vera and 6%w/w IA was chosen as the optimum formulation. The solid-state characterization of the optimized formulation (F5) revealed a successful incorporation of CTZ HCl in semi-IPN without any drug-destabilizing interaction. The in vitro drug release from F5 showed limited release in acidic media followed by a controlled release in the intestinal environment for over 72 h. Furthermore, during the in vivo evaluation, formulation F5 did not affect the hematological parameters, kidney, and liver functions. Clinical observations did not reveal any signs of illness in rabbits treated with hydrogels. Histopathological images of vital organs of treated animals showed normal cellular architecture. Thus, the results suggest a non-toxic nature and overall potential of the developed formulation as a targeted drug carrier.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Munnaza Bukhsh
- Foundation University and Medical College Islamabad Department of Medicine, Islamabad, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Chemical Laboratories, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
7
|
Kumari N, Behera M, Singh R. Facile synthesis of biopolymer decorated magnetic coreshells for enhanced removal of xenobiotic azo dyes through experimental modelling. Food Chem Toxicol 2023; 171:113518. [PMID: 36436617 DOI: 10.1016/j.fct.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Since contamination of xenobiotics in water bodies has become a global issue, their removal is gaining ample attention lately. In the present study, nZVI was synthesized using chitosan for removal of two such xenobitic dyes, Bromocresol green and (BCG) and Brilliant blue (BB), which have high prevalence in freshwater and wastewater matrices. nZVI functionalization prevents nanoparticle aggregation and oxidation, enhancing the removal of BCG and BB with an efficiency of 84.96% and 86.21%, respectively. XRD, FESEM, EDS, and FTIR have been employed to investigate the morphology, elemental composition, and functional groups of chitosan-modified nanoscale-zerovalent iron (CS@nZVI). RSM-CCD model was utilized to assess the combined effect of five independent variables and determine the best condition for maximum dye removal. The interactions between adsorbent dose (2-4 mg), pH (4-8), time (20-40 min), temperature (35-65 0C), and initial dye concentration (40-60 mg/L) was modeled to study the response, i.e., dye removal percentage. The reaction fitted well with Langmuir isotherm and pseudo-first-order kinetics, with a maximum qe value of 426.97 and 452.4 mg/g for BCG and BB, respectively. Thermodynamic analysis revealed the adsorption was spontaneous, and endothermic in nature. Moreover, CS@nZVI could be used up to five cycles of dye removal with remarkable potential for real water samples.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
8
|
Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity. Carbohydr Polym 2022; 291:119555. [DOI: 10.1016/j.carbpol.2022.119555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 01/30/2023]
|
9
|
Rheological investigations and swelling behaviour of hydrogels based on gum ghatti-cl-poly(N-isopropyl acrylamide-co-acrylic acid)/CoFe2O4 nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Karnakar RR, Gite VV. Eco-friendly slow release of ZnSO 4 as a micronutrient from poly(acrylic acid: acrylamide) and guar gum based crosslinked biodegradable hydrogels. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Rahul R. Karnakar
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| | - Vikas V. Gite
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| |
Collapse
|
11
|
Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Choudhary S, Sharma K, Bhatti MS, Sharma V, Kumar V. DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv 2022; 12:4780-4794. [PMID: 35425477 PMCID: PMC8981380 DOI: 10.1039/d1ra08786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
The current study uses the free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology (RSM). A full factorial design was used to obtain the greatest percent swelling (Ps), and key process variables were determined using the Pareto chart. To make the procedure cost-effective, a multiple regression model employing ANOVA projected a linear model with a maximum percentage swelling of 556 at the lowest concentration of all three studied factors. As a result, the sequential experimental design was successful in obtaining two-fold increases in the percentage swelling in a systematic way. An RSM-based central composite design was used to optimize the percentage swelling of the three most important synthesis parameters: initiator concentration, monomer concentration, and crosslinker concentration. The best process conditions are 7.3 mM L−1 initiator, 44 μM L−1 monomer, and 21.6 mM L−1 crosslinker. The effective synthesis of GG-cl-poly(AA) was validated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, field emission scanning electron microscopy (FE-SEM), and 1H-nuclear magnetic resonance. The swelling behavior of GG-cl-poly(AA) in water and saline solutions, as well as its water retention capability, was investigated. In comparison to distilled water, the swelling potential of optimized hydrogel was shown to be significantly reduced in saline solutions. The addition of GG-cl-poly(AA) significantly improved the moisture properties of plant growth media (clay, sandy, and clay–soil combination), implying that it has great potential in moisture stress agriculture. GG-cl-poly(AA) biodegradation was studied by soil burial and vermicomposting methods. The composting approach showed 89.95% deterioration after 22 days, while the soil burial method showed 86.71% degradation after 22 days. The synthesized hydrogel may be beneficial for agricultural applications because of its considerable degradation behaviour, strong water retention capacity, low cost, and environmental friendliness. We use free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology.![]()
Collapse
Affiliation(s)
- Sonal Choudhary
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh, India 160011
| | - Manpreet S. Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| |
Collapse
|
13
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
14
|
Biobased epoxy film derived from UV-treated epoxidised natural rubber and tannic acid: Impact on film properties and biodegradability. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Sudarsan S, Selvi MS, Chitra G, Sakthivel S, Franklin DS, Guhanathan S. Nontoxic pH-sensitive silver nanocomposite hydrogels for potential wound healing applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1786584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - M. S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sakthivel
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - D. S. Franklin
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| |
Collapse
|
16
|
Li X, Gong S, Yang L, Zhang F, Xie L, Luo Z, Xia X, Wang J. Study on the degradation behavior and mechanism of Poly(lactic acid) modification by ferric chloride. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Buyana B, Aderibigbe B, Ray SS, Ndinteh DT, Fonkui Y. Development, characterization, and
in vitro
evaluation of water soluble poloxamer/pluronic‐mastic gum‐gum acacia‐based wound dressing. J Appl Polym Sci 2019. [DOI: 10.1002/app.48728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- B. Buyana
- Department of ChemistryUniversity of Fort Hare Alice Campus Eastern Cape South Africa
| | - B.A. Aderibigbe
- Department of ChemistryUniversity of Fort Hare Alice Campus Eastern Cape South Africa
| | - S. S. Ray
- National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial Research Pretoria 0001 South Africa
| | - D. T. Ndinteh
- Department of Applied ChemistryUniversity of Johannesburg, Doornfontein Campus Johannesburg 2028 South Africa
| | - Y.T. Fonkui
- Department of Applied ChemistryUniversity of Johannesburg, Doornfontein Campus Johannesburg 2028 South Africa
| |
Collapse
|
18
|
Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhu W, Zhang Y, Wang P, Yang Z, Yasin A, Zhang L. Preparation and Applications of Salt-Resistant Superabsorbent Poly (Acrylic Acid-Acrylamide/Fly Ash) Composite. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E596. [PMID: 30781533 PMCID: PMC6416650 DOI: 10.3390/ma12040596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
Solution polymerization synthesized alt-resistant superabsorbent poly (acrylic acid-acrylamide/fly ash) composites. The mass ratio of acrylic acid (AA) to acrylamide (AM), the concentration of crosslinker, the neutralization degree (ND) of AA, and the polymerization temperature were investigated by single-factor method. Optimized conditions for the synthesis of poly (acrylic acid-acrylamide/fly ash) (PAA-AM/FA) are, as following: m (AA)/m (AM) is 1.5, the content of crosslinker N, N-methylenebisacrylamide. (MBA) is 0.7%, neutralization degree of AA is 70%, polymerization temperature is 70 °C, and fly ash (FA) content is 50%. The prepared PAA-AM/FA demonstrated superior water absorption performance. The absorption capacities of PAA-AM/FA for pure water and 0.9% NaCl solution were found to be 976 g·g-1 and 81 g·g-1, respectively. Furthermore, PAA-AM/FA was found to have excellent adsorption capacity (148 mg·g-1) for Rhodamine B in water. Fourier Transform-Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM) characterized the prepared materials. Results showed that fly ash was incorporated into the macromolecular polymer matrix and played a key role in improving the performance of the polymer composites.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of chemical and environmental engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of chemical and environmental engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Penglei Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiyong Yang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of chemical and environmental engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
20
|
Abstract
Slow release fertilizer hydrogels combine fertilizer and hydrogel into one system.
Collapse
Affiliation(s)
- Ros Azlinawati Ramli
- Material Technology Program
- Faculty of Industrial Sciences and Technology
- Universiti Malaysia Pahang (UMP)
- Kuantan
- Malaysia
| |
Collapse
|
21
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
22
|
Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym 2018; 185:169-178. [PMID: 29421054 DOI: 10.1016/j.carbpol.2018.01.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
The novel hydrogels were synthesized by grafting guar gum with acrylic acid and cross-linking with ethylene glycol di methacrylic acid (EGDMA). The synthesis of hydrogel was confirmed by characterization through 13C NMR, FTIR spectroscopy, SEM micrography, thermo-gravimetric analysis and water absorption studies under different solutions. Synthesized hydrogel (GG-AA-EGDMA) was confirmed to be biodegradable with half-life period of 77 days through soil burial biodegradation studies. The effects of hydrogel treatment on soil were evaluated by studying various physico-chemical properties of soil like bulk density, porosity, water absorption and retention capacity etc. The hydrogel which could absorb up to 800 ml water per gram, after addition to soil, improved its porosity, moisture absorption and retention capacity significantly. Water holding capacity of water increased up to 54% of its original and porosity also increased up to 9% of its original. The synthesized hydrogel revealed tremendous potential as soil conditioning material for agricultural applications.
Collapse
Affiliation(s)
- Nandkishore Thombare
- Processing and Product Development Division, ICAR-Indian Institute of Natural Resins and Gums, Namkum, Ranchi, 834010, India.
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - M Z Siddiqui
- Processing and Product Development Division, ICAR-Indian Institute of Natural Resins and Gums, Namkum, Ranchi, 834010, India
| | - Usha Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Deodhari Singh
- Processing and Product Development Division, ICAR-Indian Institute of Natural Resins and Gums, Namkum, Ranchi, 834010, India
| | - Gopal R Mahajan
- ICAR - Central Coastal Agricultural Research Institute, Ela, Old Goa, 403402, India
| |
Collapse
|
23
|
Sukriti, Kaith B, Jindal R, Kumari M, Kaur M. Biodegradable-stimuli sensitive xanthan gum based hydrogel: Evaluation of antibacterial activity and controlled agro-chemical release. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Sharma J, Chadha AS, Pruthi V, Anand P, Bhatia J, Kaith BS. Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:176-187. [PMID: 28049087 DOI: 10.1016/j.jenvman.2016.12.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/28/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL-1 and auramine-O 26 mgL-1, at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R2 value about 0.99.
Collapse
Affiliation(s)
- Jitender Sharma
- Research and Development Laboratory, Department of Chemistry, Dr B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| | - Amritpal Singh Chadha
- Research and Development Laboratory, Department of Chemistry, Dr B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| | - Vaishali Pruthi
- Research and Development Laboratory, Department of Chemistry, Dr B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| | - Prerna Anand
- Research and Development Laboratory, Department of Chemistry, Dr B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| | - Jaspreet Bhatia
- Department of Chemistry, D.A.V College, Jalandhar, Punjab, India.
| | - B S Kaith
- Research and Development Laboratory, Department of Chemistry, Dr B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
25
|
Microwave-assisted green synthesis of hybrid nanocomposite: removal of Malachite green from waste water. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0467-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Sharma K, Kumar V, Swart-Pistor C, Chaudhary B, Swart HC. Synthesis, characterization, and anti-microbial activity of superabsorbents based on agar–poly(methacrylic acid-glycine). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516653148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, poly(methacrylic acid-glycine)-grafted agar-based hydrogels with optimized process parameters were synthesized via a two-step green-radiation induced grafting process using microwave heating. Poly(methacrylic acid) chains were graft copolymerized onto an agar backbone using ammonium persulfate as a free radical initiator and N,N′-methylene-bis-acrylamide as a cross-linking means using microwave heating. The influence of different reaction parameters was investigated on the percentage swelling behavior of the cross-linked hydrogel networks. The prepared hydrogel networks with optimum percentage swelling were characterized by Fourier transform infrared spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, using agar as a reference. The anti-bacterial activities of the prepared hydrogels against Gram-positive Staphylococcus aureus bacteria and Gram-negative Escherichia coli bacteria were investigated. Staphylococcus aureus was found to be more susceptible to the compounds compared to Escherichia coli. These results indicate that the prepared hydrogels have the potential to be applied as anti-bacterial agents.
Collapse
Affiliation(s)
- Kashma Sharma
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Vijay Kumar
- Department of Physics, University of the Free State, Bloemfontein, South Africa
- Department of Applied Physics, Chandigarh University, Gharuan, Mohali (Punjab), India
| | - Chantel Swart-Pistor
- Centre for Microscopy, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Babulal Chaudhary
- Science and Engineering Research Board, Department of Science & Technology, New Delhi, India
| | - Hendrik C Swart
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
27
|
Application of biodegradable superabsorbent hydrogel composite based on Gum ghatti-co-poly(acrylic acid-aniline) for controlled drug delivery. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2015.12.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Sharma R, Kalia S, Kaith BS, Pathania D, Kumar A, Thakur P. Guaran-based biodegradable and conducting interpenetrating polymer network composite hydrogels for adsorptive removal of methylene blue dye. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Sharma K, Kumar V, Kaith BS, Som S, Kumar V, Pandey A, Kalia S, Swart HC. Synthesis of Biodegradable Gum ghatti Based Poly(methacrylic acid-aniline) Conducting IPN Hydrogel for Controlled Release of Amoxicillin Trihydrate. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5044743] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kashma Sharma
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Vijay Kumar
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - B. S. Kaith
- Department
of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India
| | - Sudipta Som
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Vinod Kumar
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - Anurag Pandey
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| | - S. Kalia
- Department
of Chemistry, Bahra University, Waknaghat (Shimla Hills) 173234, District Solan, Himachal Pradesh, India
| | - H. C. Swart
- Department
of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| |
Collapse
|
30
|
Sharma K, Kaith BS, Kalia S, Kumar V, Swart HC. Gum ghatti-based biodegradable and conductive carriers for colon-specific drug delivery. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3505-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Chen J, Zhang W, Li X. Preparation and characterization of a novel superabsorbent of konjac glucomannan-poly(acrylic acid) with trimethylolpropane trimethacrylate cross-linker. RSC Adv 2015. [DOI: 10.1039/c5ra04522c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel superabsorbent was prepared by the solution polymerization of partially neutralized acrylic acid onto konjac glucomannan using potassium persulfate as a free radical initiator and trimethylolpropane trimethacrylate as a crosslinking agent.
Collapse
Affiliation(s)
- Jianfu Chen
- School of Chemical Engineering
- Fuzhou University
- Fuzhou
- China
- Department of Food and Biology Engineering
| | - Weiying Zhang
- School of Chemical Engineering
- Fuzhou University
- Fuzhou
- China
| | - Xiao Li
- School of Chemical Engineering
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
32
|
Sharma K, Kumar V, Kaith BS, Kumar V, Som S, Pandey A, Kalia S, Swart HC. Evaluation of a conducting interpenetrating network based on gum ghatti-g-poly(acrylic acid-aniline) as a colon-specific delivery system for amoxicillin trihydrate and paracetamol. NEW J CHEM 2015. [DOI: 10.1039/c4nj01982b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of colon-specific drug delivery systems for amoxicillin trihydrate and paracetamol using gum ghatti based crosslinked hydrogels.
Collapse
Affiliation(s)
- Kashma Sharma
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Vijay Kumar
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Balbir Singh Kaith
- Department of Chemistry
- Dr. B.R. Ambedkar National Institute of Technology
- Jalandhar
- India
| | - Vinod Kumar
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Sudipta Som
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Anurag Pandey
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| | - Susheel Kalia
- Department of Chemistry
- Bahra University
- Waknaghat (Shimla Hills)
- Dist. Solan
- India
| | - Hendrik C. Swart
- Department of Physics
- University of the Free State
- Bloemfontein ZA9300
- South Africa
| |
Collapse
|
33
|
Sharma K, Kumar V, Kaith B, Kumar V, Som S, Kalia S, Swart H. Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly(acrylic acid–aniline) hydrogels. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2014.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kaith BS, Sharma R, Kalia S, Bhatti MS. Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 2014. [DOI: 10.1039/c4ra05300a] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|