1
|
Vuković JP, Tišma M. The role of NMR spectroscopy in lignocellulosic biomass characterisation: A mini review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100219. [PMID: 39263258 PMCID: PMC11388798 DOI: 10.1016/j.fochms.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.
Collapse
Affiliation(s)
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
2
|
Arantes V, Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Nogueira CFO, Marcondes WF. Enzymatic approaches for diversifying bioproducts from cellulosic biomass. Chem Commun (Camb) 2024; 60:9704-9732. [PMID: 39132917 DOI: 10.1039/d4cc02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellulosic biomass is the most abundantly available natural carbon-based renewable resource on Earth. Its widespread availability, combined with rising awareness, evolving policies, and changing regulations supporting sustainable practices, has propelled its role as a crucial renewable feedstock to meet the escalating demand for eco-friendly and renewable materials, chemicals, and fuels. Initially, biorefinery models using cellulosic biomass had focused on single-product platform, primarily monomeric sugars for biofuel. However, since the launch of the first pioneering cellulosic plants in 2014, these models have undergone significant revisions to adapt their biomass upgrading strategy. These changes aim to diversify the bioproduct portfolio and improve the revenue streams of cellulosic biomass biorefineries. Within this area of research and development, enzyme-based technologies can play a significant role by contributing to eco-design in producing and creating innovative bioproducts. This Feature Article highlights our strategies and recent progress in utilizing the biological diversity and inherent selectivity of enzymes to develop and continuously optimize sustainable enzyme-based technologies with distinct application approaches. We have advanced technologies for standalone platforms, which produce various forms of cellulose nanomaterials engineered with customized and enhanced properties and high yields. Additionally, we have tailored technologies for integration within a biorefinery concept. This biorefinery approach prioritizes designing tailored processes to establish bionanomaterials, such as cellulose and lignin nanoparticles, and bioactive molecules as part of a new multi-bioproduct platform for cellulosic biomass biorefineries. These innovations expand the range of bioproducts that can be produced from cellulosic biomass, transcending the conventional focus on monomeric sugars for biofuel production to include biomaterials biorefinery. This shift thereby contributes to strengthening the Bioeconomy strategy and supporting the achievement of several Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Carlaile F O Nogueira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Wilian F Marcondes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
3
|
Jeffri NI, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK. Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges. Int J Biol Macromol 2024; 274:133506. [PMID: 38944064 DOI: 10.1016/j.ijbiomac.2024.133506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Recent advancements have transformed lignin from a byproduct into a valuable raw material for polymers, dyes, adhesives, and fertilizers. However, its structural heterogeneity, variable reactive group content, impurities, and high extraction costs pose challenges to industrial-scale adoption. Efficient separation technologies and selective bond cleavage are crucial. Advanced pretreatment methods have enhanced lignin purity and reduced contamination, while novel catalytic techniques have improved depolymerization efficiency and selectivity. This review compares catalytic depolymerization methodologies, highlighting their advantages and disadvantages, and noting challenges in comparing yield values due to variations in isolation methods and lignin sources. Recognizing "technical lignin" from pulping processes, the review emphasizes its diverse applications and the necessity of understanding its structural characteristics. Emerging trends focus on bio-based functional additives and nanostructured lignin materials, promising enhanced properties and functionalities. Innovations open possibilities in sustainable agriculture, high-performance foams and composites, and advanced medical applications like drug delivery and wound healing. Leveraging lignin's biocompatibility, abundance, and potential for high-value applications, it can significantly contribute to sustainable material development across various industries. Continuous research in bio-based additives and nanostructured materials underscores lignin's potential to revolutionize material science and promote environmentally friendly industrial applications.
Collapse
Affiliation(s)
- Noorfarisya Izma Jeffri
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia.
| | - Mohamad Haafiz Mohamad Kassim
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Malaysia
| | - Che Ku Abdullah
- Division of Bioresource Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
4
|
Girard V, Fragnières L, Chapuis H, Brosse N, Marchal-Heussler L, Canilho N, Parant S, Ziegler-Devin I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro- to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers (Basel) 2024; 16:1901. [PMID: 39000756 PMCID: PMC11244244 DOI: 10.3390/polym16131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
In recent years, concerns about the harmful effects of synthetic UV filters on the environment have highlighted the need for natural sun blockers. Lignin, the most abundant aromatic renewable biopolymer on Earth, is a promising candidate for next-generation sunscreen due to its inherent UV absorbance and its green, biodegradable, and biocompatible properties. Lignin's limitations, such as its dark color and poor dispersity, can be overcome by reducing particle size to the nanoscale, enhancing UV protection and formulation. In this study, 100-200 nm lignin nanoparticles (LNPs) were prepared from various biomass by-products (hardwood, softwood, and herbaceous material) using an eco-friendly anti-solvent precipitation method. Pure lignin macroparticles (LMPs) were extracted from beech, spruce, and wheat straw using an ethanol-organosolv treatment and compared with sulfur-rich kraft lignin (KL). Sunscreen lotions made from these LMPs and LNPs at various concentrations demonstrated novel UV-shielding properties based on biomass source and particle size. The results showed that transitioning from the macro- to nanoscale increased the sun protection factor (SPF) by at least 2.5 times, with the best results improving the SPF from 7.5 to 42 for wheat straw LMPs and LNPs at 5 wt%. This study underscores lignin's potential in developing high-quality green sunscreens, aligning with green chemistry principles.
Collapse
Affiliation(s)
- Victor Girard
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Léane Fragnières
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Hubert Chapuis
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| | - Laurent Marchal-Heussler
- Ecole Nationale Supérieure des Industries Chimique (ENSIC), University of Lorraine, F-54000 Nancy, France;
| | - Nadia Canilho
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Stéphane Parant
- Laboratoire Lorrain de Chimie Moléculaire (L2CM), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (N.C.); (S.P.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculty of Science and Technology, University of Lorraine, F-54000 Nancy, France; (L.F.); (H.C.); (N.B.); (I.Z.-D.)
| |
Collapse
|
5
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
6
|
Holland C, Shapira P. Building the bioeconomy: A targeted assessment approach to identifying biobased technologies, challenges and opportunities. ENGINEERING BIOLOGY 2024; 8:1-15. [PMID: 38525250 PMCID: PMC10959757 DOI: 10.1049/enb2.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024] Open
Abstract
The authors explore opportunities, challenges, and strategies to translate and responsibly scale innovative biobased technologies to build more sustainable bioeconomies. The pandemic and other recent disruptions increased exposure to issues of resilience and regional imbalance, highlighting a need for production and consumption regimes centred more on local biobased resources and dispersed production. The authors review potential biobased technology strategies and identify promising and feasible options for the United Kingdom. Initial landscape and bibliometric analysis identified 50 potential existing and emerging biobased technologies, which were assessed for their ability to fulfil requirements related to biobased production, national applicability, and economic-, societal-, and environmental-benefits, leading to identification of 18 promising biobased production technologies. Further analysis and focus-group discussion with industrial, governmental, academic, agricultural, and social stakeholders, identified three technology clusters for targeted assessment, drawing on cellulose-, lignin-, and seaweed feedstocks. Case studies were developed for each cluster, addressing conversations around sustainable management, use of biomass feedstocks, and associated environmental-, social-, and economic challenges. Cases are presented with discussion of insights and implications for policy. The approach presented is put forward as a scalable assessment method that can be useful in prompting, informing, and advancing discussion and deliberation on opportunities and challenges for biobased transformations.
Collapse
Affiliation(s)
- Claire Holland
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Philip Shapira
- Manchester Institute of Innovation ResearchAlliance Manchester Business SchoolUniversity of ManchesterManchesterUK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals and the Future Biomanufacturing Research HubManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
- School of Public PolicyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Łątka P, Olszański B, Żurowska M, Dębosz M, Rokicińska A, Kuśtrowski P. Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media. Molecules 2024; 29:960. [PMID: 38474471 DOI: 10.3390/molecules29050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In this work, a synthesis and activation path, which enabled the preparation of spherical activated carbon from a lignin precursor, characterized by high adsorption capacity in the removal of phenolic compounds from water, was successfully developed. Two industrial by-products, i.e., Kraft lignin and sodium lignosulfonate, were used to form spherical nanometric lignin grains using pH and solvent shift methods. The obtained materials became precursors to form porous activated carbons via chemical activation (using K2CO3 or ZnCl2 as activating agents) and carbonization (in the temperature range of 600-900 °C). The thermal stabilization step at 250 °C was necessary to ensure the sphericity of the grains during high-temperature heat treatment. The study investigated the influence of the type of chemical activator used, its quantity, and the method of introduction into the lignin precursor, along with the carbonization temperature, on various characteristics including morphology (examined by scanning electron microscopy), the degree of graphitization (evaluated by powder X-ray diffraction), the porosity (assessed using low-temperature N2 adsorption), and the surface composition (analyzed with X-ray photoelectron spectroscopy) of the produced carbons. Finally, the carbon materials were tested as adsorbents for removing phenol from an aqueous solution. A conspicuous impact of microporosity and a degree of graphitization on the performance of the investigated adsorbents was found.
Collapse
Affiliation(s)
- Piotr Łątka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Bazyli Olszański
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Żurowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, St. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek Dębosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Borisova AS, Virkkala T, Pylkkänen R, Kellock M, Mohammadi P. Toughening brittle kraft lignin coating on mismatched substrate with spider Silk-Inspired protein as an interfacial modulator. J Colloid Interface Sci 2024; 655:789-799. [PMID: 37976752 DOI: 10.1016/j.jcis.2023.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Current production of functional coatings majorly relies on petrochemical formulations. While they have provided substantial benefits, their fabrication processes as well as their disposal created widespread ecological catastrophes. Thus, there is a pressing demand and calls for a radical transformation to develop sustainable solutions by using renewable building blocks. Herein, we report on a novel coating formulation by combining largely undervalued kraft lignin from the forest industry, with genetically engineered and recombinantly produced spider silk-inspired protein through the industrial biotechnology platform. Unmodified kraft lignin was used as the main bulk component in the coating given its abundance and low cost. The nanometer-thin spider silk-inspired protein (SSIP) was used as a primary layer exhibiting dual functionalities: (i) modulating the mechanical properties of inherently brittle kraft lignin, (ii) substantially increasing the interfacial binding of kraft lignin to the underlying rigid silica substrate with the mismatched physicochemical properties. Our findings demonstrate how synergistic interplay components could result in scalable and durable functional coatings which could potentially be used in various medical and industrial applications in the future.
Collapse
Affiliation(s)
- Anna S Borisova
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland.
| | - Tuuli Virkkala
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| | - Robert Pylkkänen
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland
| | - Miriam Kellock
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, 00076 Aalto, Finland.
| |
Collapse
|
9
|
Bugg TDH. The chemical logic of enzymatic lignin degradation. Chem Commun (Camb) 2024; 60:804-814. [PMID: 38165282 PMCID: PMC10795516 DOI: 10.1039/d3cc05298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Lignin is an aromatic heteropolymer, found in plant cell walls as 20-30% of lignocellulose. It represents the most abundant source of renewable aromatic carbon in the biosphere, hence, if it could be depolymerised efficiently, then it would be a highly valuable source of renewable aromatic chemicals. However, lignin presents a number of difficulties for biocatalytic or chemocatalytic breakdown. Research over the last 10 years has led to the identification of new bacterial enzymes for lignin degradation, and the use of metabolic engineering to generate useful bioproducts from microbial lignin degradation. The aim of this article is to discuss the chemical mechanisms used by lignin-degrading enzymes and microbes to break down lignin, and to describe current methods for generating aromatic bioproducts from lignin using enzymes and engineered microbes.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
10
|
Martín C, Rodríguez A, Montagnaro F. Introduction to the RSC Advances themed collection Chemistry in Biorefineries. RSC Adv 2023; 13:28561-28563. [PMID: 37780740 PMCID: PMC10540034 DOI: 10.1039/d3ra90087h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Professor Carlos Martín, Professor Alejandro Rodríguez and Professor Fabio Montagnaro introduce the RSC Advances themed collection Chemistry in Biorefineries.
Collapse
Affiliation(s)
- Carlos Martín
- Department of Biotechnology, Inland Norway University of Applied Sciences N-2317 Hamar Norway
- Department of Chemistry, Umeå University SE-901 87 Umeå Sweden
| | - Alejandro Rodríguez
- BioPrEn Group, Instituto Químico para la Energía y el Medioambiente, Chemical Engineering Department, Universidad de Córdoba 14014 Córdoba Spain
| | - Fabio Montagnaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
| |
Collapse
|
11
|
Ribca I, Sochor B, Roth SV, Lawoko M, Meier MAR, Johansson M. Effect of Molecular Organization on the Properties of Fractionated Lignin-Based Thiol-Ene Thermoset Materials. ACS OMEGA 2023; 8:25478-25486. [PMID: 37483230 PMCID: PMC10357541 DOI: 10.1021/acsomega.3c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
In this study, the combination of sequential solvent fractionation of technical Kraft lignin was followed by allylation of most OH functionalities to give highly functional thermoset resins. All lignin fractions were highly functionalized on the phenolic (≥95%) and carboxylic acid OH (≥85%) and to a significant extent on the aliphatic OH moieties (between 43 and 75%). The resins were subsequently cross-linked using thiol-ene chemistry. The high amount of allyl functionalities resulted in a high cross-link density. Dynamic mechanical analysis measurements showed that the thioether content, directly related to the allyl content, strongly affects the performance of these thermosets with a glass transition temperature (Tg) between 81 and 95 °C and with a storage modulus between 1.9 and 3.8 GPa for all thermosets. The lignin fractions and lignin-based thermosets' morphology, at the nanoscale, was studied by wide-angle X-ray scattering measurements. Two π-π stacking interactions were observed: sandwich (≈4.1-4.7 Å) and T-shaped (≈5.5-7.2 Å). The introduction of allyl functionalities weakens the T-shaped π-π stacking interactions. A new signal corresponding to a distance of ≈3.5 Å was observed in lignin-based thermosets, which was attributed to a thioether organized structure. At the same time, a lignin superstructure was observed with a distance/size corresponding to 7.9-17.5 Å in all samples.
Collapse
Affiliation(s)
- Iuliana Ribca
- Wallenberg
Wood Science Center (WWSC), Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Division
of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 48, SE-100 44 Stockholm, Sweden
| | - Benedikt Sochor
- Deutsches-Elektronen
Synchrotron (DESY), 22607 Hamburg, Germany
| | - Stephan V. Roth
- Division
of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 48, SE-100 44 Stockholm, Sweden
- Deutsches-Elektronen
Synchrotron (DESY), 22607 Hamburg, Germany
| | - Martin Lawoko
- Wallenberg
Wood Science Center (WWSC), Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Division
of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Michael A. R. Meier
- Institute
of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mats Johansson
- Wallenberg
Wood Science Center (WWSC), Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Division
of Coating Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 48, SE-100 44 Stockholm, Sweden
| |
Collapse
|
12
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Ariyanta HA, Sari FP, Sohail A, Restu WK, Septiyanti M, Aryana N, Fatriasari W, Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. Int J Biol Macromol 2023; 240:124523. [PMID: 37080401 DOI: 10.1016/j.ijbiomac.2023.124523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Lignin has the potential to be used as an additive, coating agent, fertilizer, plant growth stimulator, and packaging material in the agroindustry due to its functional aromatic structure. The quantitative measurement of functional groups is a significant element of the research for lignin structure since they directly impact their optical, dispersion, and chemical properties. These physical and chemical properties of lignin strongly depend on its type and source and its isolation procedure. Thus, lignin provides numerous opportunities for the circular economy in the agroindustry; however, studying and resolving the challenges associated with its separation, purification, and modification is required. This review discusses the most recent findings on lignin use in agroindustry and historical facts about lignin. The properties of lignin and its roles as coating agents, pesticide carriers, plant growth stimulators, and soil-improving agents have been summarized. The emerging challenges in the field of lignin-based agroindustry are considered, and potential future steps to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Harits Atika Ariyanta
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Department of Pharmacy, Universitas Gunadarma, Depok, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Fahriya Puspita Sari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Asma Sohail
- Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan
| | - Witta Kartika Restu
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Melati Septiyanti
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Nurhani Aryana
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Serpong, South Tangerang, Banten 15314, Indonesia.
| | - Widya Fatriasari
- Research center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center of Biomass-Based Nano Cosmetic, in Collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia.
| | - Adarsh Kumar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|
14
|
Vinod A, Pulikkalparambil H, Jagadeesh P, Rangappa SM, Siengchin S. Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications. Heliyon 2023; 9:e13614. [PMID: 37101468 PMCID: PMC10123159 DOI: 10.1016/j.heliyon.2023.e13614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A growing need to reduce the global carbon footprint has prompted all sectors to make significant efforts in this direction. For example, there has been much focus on green carbon fiber sustainability. For example, it was found that the polyaromatic heteropolymer lignin might act as an intermediary in synthesising carbon fiber. Biomass is seen as a potential carbon accommodated solid natural sources that protects the nature and has a big overall supply and widespread distribution. With growing environmental concern in recent years, biomass has gained appeal as a raw material for production of carbon fibers. Especially, the positives of lignin material include its reasonable budget, sustainability, and higher carbon content, which makes it a dominating precursor. This review has examined a variety of bio precursors that help produce lignin and have higher lignin concentrations. In addition, there has been much research on plant sources, lignin types, factors affecting carbon fiber synthesis, spinning methods, stabilization, carbonization, and activation the characterisation techniques used for the lignin carbon fiber to comprehend the structure and features. In addition, an overview of the applications that use lignin carbon fiber has been provided.
Collapse
Affiliation(s)
- Athira Vinod
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Praveenkumara Jagadeesh
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| |
Collapse
|
15
|
Lignin-Based Admixtures: A Scientometric Analysis and Qualitative Discussion Applied to Cement-Based Composites. Polymers (Basel) 2023; 15:polym15051254. [PMID: 36904495 PMCID: PMC10006873 DOI: 10.3390/polym15051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
The development of lignin-based admixtures (LBAs) for cement-based composites is an alternative to valorizing residual lignins generated in biorefineries and pulp and paper mills. Consequently, LBAs have become an emerging research domain in the past decade. This study examined the bibliographic data on LBAs through a scientometric analysis and in-depth qualitative discussion. For this purpose, 161 articles were selected for the scientometric approach. After analyzing the articles' abstracts, 37 papers on developing new LBAs were selected and critically reviewed. Significant publication sources, frequent keywords, influential scholars, and contributing countries in LBAs research were identified during the science mapping. The LBAs developed so far were classified as plasticizers, superplasticizers, set retarders, grinding aids, and air-entraining admixtures. The qualitative discussion revealed that most studies have focused on developing LBAs using Kraft lignins from pulp and paper mills. Thus, residual lignins from biorefineries need more attention since their valorization is a relevant strategy for emerging economies with high biomass availability. Most studies focused on production processes, chemical characterizations, and primary fresh-state analyses of LBA-containing cement-based composites. However, to better assess the feasibility of using different LBAs and encompass the multidisciplinarity of this subject, it is mandatory that future studies also evaluate hardened-sate properties. This holistic review offers a helpful reference point to early-stage researchers, industry professionals, and funding authorities on the research progress in LBAs. It also contributes to understanding the role of lignin in sustainable construction.
Collapse
|
16
|
Vachon J, Assad‐Alkhateb D, de Araujo Hsia L, Lora JH, Baumberger S. Effect of compatibilizers on polyethylene‐eucalyptus lignin blends. J Appl Polym Sci 2023. [DOI: 10.1002/app.53695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
| | | | | | | | - Stéphanie Baumberger
- Institut Jean‐Pierre Bourgin, INRAE, AgroParisTech Université Paris‐Saclay Versailles France
| |
Collapse
|
17
|
Cassoni AC, Costa P, Mota I, Vasconcelos MW, Pintado M. Recovery of lignins with antioxidant activity from Brewer’s spent grain and olive tree pruning using deep eutectic solvents. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Mandal DD, Singh G, Majumdar S, Chanda P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11119-11140. [PMID: 36504305 PMCID: PMC9742045 DOI: 10.1007/s11356-022-24022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Apart from protecting the environment from undesired waste impacts, wastewater treatment is a crucial platform for recovery. The exploitation of suitable technology to transform the wastes from pulp and paper industries (PPI) to value-added products is vital from an environmental and socio-economic point of view that will impact everyday life. As the volume and complexity of wastewater increase in a rapidly urbanizing world, the challenge of maintaining efficient wastewater treatment in a cost-effective and environmentally friendly manner must be met. In addition to producing treated water, the wastewater treatment plant (WWTP) has a large amount of paper mill sludge (PMS) daily. Sludge management and disposal are significant problems associated with wastewater treatment plants. Applying the biorefinery concept is necessary for PPI from an environmental point of view and because of the piles of valuables contained therein in the form of waste. This will provide a renewable source for producing valuables and bio-energy and aid in making the overall process more economical and environmentally sustainable. Therefore, it is compulsory to continue inquiry on different applications of wastes, with proper justification of the environmental and economic factors. This review discusses current trends and challenges in wastewater management and the bio-valorization of paper mills. Lignin has been highlighted as a critical component for generating valuables, and its recovery prospects from solid and liquid PPI waste have been suggested.
Collapse
Affiliation(s)
- Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Gaurav Singh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| | - Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
- Department of Zoology, Sonamukhi College, Sonamukhi, Bankura, 722207 West Bengal India
| | - Protik Chanda
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209 West Bengal India
| |
Collapse
|
19
|
Aboagye D, Medina F, Contreras S. Toward A Facile Depolymerization of Alkaline Lignin into High-value Platform Chemicals via the Synergetic Combination of Mechanocatalysis with Photocatalysis or Fenton Process. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Jassal V, Dou C, Sun N, Singh S, Simmons BA, Choudhary H. Finding values in lignin: A promising yet under-utilized component of the lignocellulosic biomass. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1059305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This article outlines the technical and economic potentials of lignin in unlocking sustainable biorefineries. The benefits of using this highly functionalized biopolymer for the growth of sustainable economy have been highlighted. But practically, the possibility of commercially substituting petroleum oil with lignin is still not very high as the estimated biofuel production cost is 2–3 times higher than the former one. However, with the advancement in technology and more efficient measures by biorefineries such as storing and processing the biomass near the field so as to reduce the transportation cost, it is possible to gain higher profits. Companies like Domtar, Stora Enso, Borregaard’s LignoTech, VITO, and Chemelot InSciTe have been promoting commercial value of lignin. The growth of lignin market after the start-up production at various sites has been discussed in this review. Combining the complete “start-to-finish” analysis with economic evaluation gives a pragmatic overview of the possibilities whether lignin will join petroleum oil as an efficient and cost-effective renewable source.
Collapse
|
21
|
A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl Microbiol Biotechnol 2022; 107:201-217. [DOI: 10.1007/s00253-022-12263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
|
22
|
Pinto PIF, Magina S, Fateixa S, Pinto PCR, Liebner F, Evtuguin DV. Modification of Paper Surface by All-Lignin Coating Formulations. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7869. [PMID: 36431355 PMCID: PMC9695548 DOI: 10.3390/ma15227869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
All-lignin coating formulations were prepared while combining water-soluble cationic kraft lignin (quaternized LignoBoost®, CL) and anionic lignosulphonate (LS). The electrostatic attraction between positively charged CL and negatively charged LS led to the formation of insoluble self-organized macromolecule aggregates that align to films. The structures of the formed layers were evaluated by atomic force microscopy (AFM), firstly on glass lamina using dip-coating deposition and then on handsheets and industrial uncoated paper using roll-to-roll coating in a layer-by-layer mode. Coated samples were also characterized by optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (SEM/EDS), and contact angle measurements. It was suggested that the structure of all-lignin aggregates is the result of the interaction of amphiphilic water-soluble lignin molecules leading to their specifically ordered mutual arrangement depending on the order and the mode of their application on the surface. The all-lignin coating of cellulosic fiber imparts lower air permeability and lower free surface energy to paper, mainly due to a decrease in surface polarity, thus promoting the paper's hydrophobic properties. Moderate loading of lignin coating formulations (5-6 g m-2) did not affect the mechanical strength of the paper.
Collapse
Affiliation(s)
- Patricia I. F. Pinto
- RAIZ—Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, 3801-501 Eixo Aveiro, Portugal
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Magina
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sara Fateixa
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paula C. R. Pinto
- RAIZ—Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, 3801-501 Eixo Aveiro, Portugal
| | - Falk Liebner
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Dmitry V. Evtuguin
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
Cassoni AC, Costa P, Vasconcelos MW, Pintado M. Systematic review on lignin valorization in the agro-food system: From sources to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115258. [PMID: 35751227 DOI: 10.1016/j.jenvman.2022.115258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable resource on earth and currently most of this biomass is considered a low-value waste. Specifically, lignin is an underrated bioresource that is mostly burned for energy production and few value-added products have been created. Since the agro-food industry produces large amounts of wastes that can be potential sources of high-quality lignin, scientific efforts should be directed to this industry. Thus, this review provides a systematic overview of the trends and evolution of research on agro-food system-derived lignin (from 2010 to 2020), including the extraction of lignin from various agro-food sources and emergent applications of lignin in the agro-food chain. Crops with the highest average production/year (n = 26) were selected as potential lignin sources. The extraction process efficiency (yield) and lignin purity were used as indicators of the raw material potential. Overall, it is notable that research interest on agro-food lignin has increased exponentially over the years, both as source (567%) and application (128%). Wheat, sugarcane, and maize are the most studied sources and are the ones that render the highest lignin yields. As for the extraction methods used, alkaline and organosolv methods are the most employed (∼50%). The main reported applications are related to lignin incorporation in polymers (∼55%) and as antioxidant (∼24%). Studies on agro-food system-derived lignin is of most importance since there are numerous possible sources that are yet to be fully valorized and many promising applications that need to be further developed.
Collapse
Affiliation(s)
- Ana C Cassoni
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Patrícia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
24
|
Effect of alkaline and deep eutectic solvents pretreatments on the recovery of lignin with antioxidant activity from grape stalks. Int J Biol Macromol 2022; 220:406-414. [PMID: 35931297 DOI: 10.1016/j.ijbiomac.2022.07.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
Grape stalks are lignocellulosic residues that can be valorized through the extraction of lignin - an underutilized biopolymer with high potential. Two lignin extraction methods, alkaline and deep eutectic solvents (DES), were studied, and experimental designs were carried out to obtain the best extraction conditions. The defined parameters for alkaline extraction allowed the recovery of ~48 % of lignin with low purity that was further improved with an autohydrolysis pretreatment (~79 % purity; ~32 % yield). Optimum parameters of DES method rendered high purity lignin (~90 %) without the need of a pretreatment and with a better yield (50.2 % (±2.3)) than the alkaline method. Both lignin fractions presented high antioxidant activities, being close to the antioxidant capacity of BHT for DPPH scavenging. Structural analysis proved the presence of lignin in both alkaline and DES samples with similar morphology. Overall, DES method was more efficient in the extraction of lignin from grape stalks besides its greener and sustainable nature. This work is uses DES to extract lignin from this biomass while comparing it with a commonly classical method, proving that grape stalks can be used to extract lignin with a sustainable and efficient method rendering a final ingredient with value-added properties.
Collapse
|
25
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives. Polymers (Basel) 2022; 14:polym14132660. [PMID: 35808705 PMCID: PMC9268974 DOI: 10.3390/polym14132660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The comprehensive use of natural polymers, such as lignin, can accelerate the replacement of mineral oil-based commodities. Promoting the material recovery of the still underutilized technical lignin, polyolefin-lignin blends are a highly promising approach towards sustainable polymeric materials. However, a limiting factor for high-quality applications is the unpleasant odor of technical lignin and resulting blends. The latter, especially, are a target for potential odor reduction, since heat- and shear-force intense processing can intensify the smell. In the present study, the odor optimization of kraft and soda HDPE-lignin blends was implemented by the in-process application of two different processing additives–5% of activated carbon and 0.7% of a stripping agent. Both additives were added directly within the compounding process executed with a twin screw extruder. The odor properties of the produced blends were assessed systematically by a trained human panel performing sensory evaluations of the odor characteristics. Subsequently, causative odor-active molecules were elucidated by means of GC-O and 2D-GC-MS/O while OEDA gave insights into relative odor potencies of single odorants. Out of 70 different odorants detected in the entirety of the sample material, more than 30 sulfur-containing odorants were present in the kraft HDPE-lignin blend, most of them neo-formed due to high melt temperatures during extrusion, leading to strong burnt and sulfurous smells. The addition of activated carbon significantly decreased especially these sulfurous compounds, resulting in 48% of overall odor reduction of the kraft blend (mean intensity ratings of 5.2) in comparison to the untreated blend (10.0). The applied stripping agent, an aqueous solution of polymeric, surface-active substances adsorbed onto a PP carrier, was less powerful in reducing neo-formed sulfur odorants, but led to a decrease in odor of 26% in the case of the soda HDPE-lignin blend (7.4). The identification of single odorants on a molecular level further enabled the elucidation of odor reduction trends within single compound classes. The obtained odor reduction strategies not only promote the deodorization of HDPE-lignin blends, but might be additionally helpful for the odor optimization of other natural-fiber based materials.
Collapse
|
27
|
Casimiro FM, Costa CAE, Vega-Aguilar C, Rodrigues AE. Hardwood and softwood lignins from sulfite liquors: Structural characterization and valorization through depolymerization. Int J Biol Macromol 2022; 215:272-279. [PMID: 35718152 DOI: 10.1016/j.ijbiomac.2022.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This work aims to evaluate the structural characteristics and study the oxidative depolymerization of lignins obtained from hardwood and softwood sulfite liquors. Lignins were obtained after ultrafiltration and freeze-drying of the sulfite liquors and characterized based on inorganic content, nitrobenzene oxidation, 13C NMR, and molecular weight determination. The structural characteristics achieved allow evaluating the potential of each lignin through oxidative depolymerization to produce added-value phenolic monomers. Hardwood and softwood lignins were submitted to alkaline oxidation with oxygen and the reaction conditions optimized to obtain a final oxidation mixture with the maximum yield of phenolic monomers. Through oxidation with O2, hardwood lignin generates mostly syringaldehyde while lignin from softwood biomass mainly produces vanillin; moreover, a lower reaction time and the interruption of O2 admission avoid the degradation of the oxidation products in the final mixture for both lignins, more evidenced to hardwood lignin due to its higher reactivity. From the results, it is possible to conclude that a phenolic aldehyde-rich oxidation mixture could be obtained, confirming the viability of lignin as raw material to produce added-value products as vanillin and syringaldehyde.
Collapse
Affiliation(s)
- Filipa M Casimiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina A E Costa
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Carlos Vega-Aguilar
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E Rodrigues
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
28
|
Recent advances in the treatment of lignin in papermaking wastewater. World J Microbiol Biotechnol 2022; 38:116. [PMID: 35593964 DOI: 10.1007/s11274-022-03300-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
More than 695.7 million m3 of papermaking wastewater is discharged globally. It contains a mixture of complex pollutants, of which lignin is the major constituent (600-1000 mg/L) of papermaking black liquor, making it the second-largest energy-containing biomass globally and accounting for 47.4% and 59.4% of chemical oxygen demand (16,400 ± 120 mg/L) and chroma (3100 ± 22.32 mg/L) of papermaking wastewater. The complex process and dissolved pollutants are responsible for high pH, biochemical oxygen demand, chemical oxygen demand, total suspended solids, dark color, and toxicity. Papermaking wastewater has emerged as a substantial source of environmental pollution as the conventional wastewater treatment processes are high cost and seldom efficacious. This work introduces the shortcomings of the common treatment methods for papermaking wastewater and lignin, focusing on lignin biodegradation and discussing the metabolic pathways and application prospects of lignin-degrading microbial species. A comprehensive review of the existing lignin treatment methods has proposed that the reasonable amalgamation of biodegradation and various physicochemical techniques are environmentally friendly, sustainable, and economical. Lignin extraction from papermaking wastewater by technology combination is an effective approach to recover valuable organic materials and detoxify wastewater. This review focuses on recent breakthroughs and future trends in papermaking wastewater treatment and lignin removal, with special emphasis on biodegradation, recovery, and utilization of lignin, providing guidance for the mechanism exploration of lignin-degrading microorganisms and the optimization of high-value chemical production.
Collapse
|
29
|
Agrawal R, Kumar A, Singh S, Sharma K. Recent advances and future perspectives of lignin biopolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Dutta K, Singh A. Chemical modification of lignin and thereafter grafting with lactic acid for flexible polymer film preparation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Koushik Dutta
- Coal and Energy Group, Materials Sciences and Technology Division CSIR‐North East Institute of Science and Technology Jorhat Assam India
- Acadmey of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ajit Singh
- Coal and Energy Group, Materials Sciences and Technology Division CSIR‐North East Institute of Science and Technology Jorhat Assam India
- Acadmey of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
31
|
Sethupathy S, Murillo Morales G, Gao L, Wang H, Yang B, Jiang J, Sun J, Zhu D. Lignin valorization: Status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2022; 347:126696. [PMID: 35026423 DOI: 10.1016/j.biortech.2022.126696] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As an abundant aromatic biopolymer, lignin has the potential to produce various chemicals, biofuels of interest through biorefinery activities and is expected to benefit the future circular economy. However, lignin valorization is hindered by a series of constraints such as heterogeneous polymeric nature, intrinsic recalcitrance, strong smell, dark colour, challenges in lignocelluloses fractionation and the presence of high bond dissociation enthalpies in its functional groups etc. Nowadays, industrial lignin is mostly combusted for electricity production and the recycling of inorganic compounds involved in the pulping process. Given the research and development on lignin valorization in recent years, important applications such as lignin-based hydrogels, surfactants, three-dimensional printing materials, electrodes and production of fine chemicals have been systematically reviewed. Finally, this review highlights the main constraints affecting industrial lignin valorization, possible solutions and future perspectives, in the light of its abundance and its potential applications reported in the scientific literature.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Gabriel Murillo Morales
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Lu Gao
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering /College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Jianxiong Jiang
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Jianzhong Sun
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China
| | - Daochen Zhu
- Biofuels Institute, School of Environmental Science and Safety Engineering, Jiangsu University, 212013 Zhenjiang, PR China.
| |
Collapse
|
32
|
You S, Xie Y, Zhuang X, Chen H, Qin Y, Cao J, Lan T. Effect of high antioxidant activity on bacteriostasis of lignin from sugarcane bagasse. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Tsodikov MV, Chistyakov AV, Konstantinov GI, Nikolaev SA, Borisov RS, Levin IC, Maksimov YV, Gekhman AE. Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427221110069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Lang M, Li H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. CHEMSUSCHEM 2022; 15:e202101531. [PMID: 34716751 DOI: 10.1002/cssc.202101531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Adipic acid (AA) is a key industrial dicarboxylic acid intermediate used in nylon manufacturing. Unfortunately, the traditional process technology is accompanied by serious environmental pollution. Given the growing demand for adipic acid and the desire to reduce its negative impact on the environment, considerable efforts have been devoted to developing more green and friendly routes. This Review is focused on the latest advances in the sustainable preparation of AA from biomass-based platform molecules, including 5-hydroxymethylfufural, glucose, γ-valerolactone, and phenolic compounds, through biocatalysis, chemocatalysis, and the combination of both. Additionally, the development of state-of-the-art catalysts for different catalytic systems systematically is discussed and summarized, as well as their reaction mechanisms. Finally, the prospects for all preparation routes are critically evaluated and key technical challenges in the development of green and sustainable processes for the manufacture of AA are highlighted. It is hoped that the green adipic acid synthesis pathways presented can provide insights and guidance for further research into other industrial processes for the production of nylon precursors in the future.
Collapse
Affiliation(s)
- Man Lang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
35
|
Lok B, Mueller G, Ganster J, Erdmann J, Buettner A, Denk P. Odor and Constituent Odorants of HDPE-Lignin Blends of Different Lignin Origin. Polymers (Basel) 2022; 14:polym14010206. [PMID: 35012227 PMCID: PMC8747089 DOI: 10.3390/polym14010206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
The still-rising global demand for plastics warrants the substitution of non-renewable mineral oil-based resources with natural products as a decisive step towards sustainability. Lignin is one of the most abundant natural polymers and represents an ideal but hitherto highly underutilized raw material to replace petroleum-based resources. In particular, the use of lignin composites, especially polyolefin-lignin blends, is currently on the rise. In addition to specific mechanical property requirements, a challenge of implementing these alternative polymers is their heavy odor load. This is especially relevant for lignin, which exhibits an intrinsic odor that limits its use as an ingredient in blends intended for high quality applications. The present study addressed this issue by undertaking a systematic evaluation of the odor properties and constituent odorants of commercially available lignins and related high-density polyethylene (HDPE) blends. The potent odors of the investigated samples could be attributed to the presence of 71 individual odorous constituents that originated primarily from the structurally complex lignin. The majority of them was assignable to six main substance classes: carboxylic acids, aldehydes, phenols, furan compounds, alkylated 2-cyclopenten-1-ones, and sulfur compounds. The odors were strongly related to both the lignin raw materials and the different processes of their extraction, while the production of the blends had a lower but also significant influence. Especially the investigated soda lignin with hay- and honey-like odors was highly different in its odorant composition compared to lignins resulting from the sulfurous kraft process predominantly characterized by smoky and burnt odors. These observations highlight the importance of sufficient purification of the lignin raw material and the need for odor abatement procedures during the compounding process. The molecular elucidation of the odorants causing the strong odor represents an important procedure to develop odor reduction strategies.
Collapse
Affiliation(s)
- Bianca Lok
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany; (B.L.); (A.B.)
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Gunnar Mueller
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.M.); (J.G.); (J.E.)
| | - Johannes Ganster
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.M.); (J.G.); (J.E.)
| | - Jens Erdmann
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.M.); (J.G.); (J.E.)
| | - Andrea Buettner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany; (B.L.); (A.B.)
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
| | - Philipp Denk
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany; (B.L.); (A.B.)
- Correspondence: ; Tel.: +49-8161-491-318
| |
Collapse
|
36
|
Yang C, Chen H, Peng T, Liang B, Zhang Y, Zhao W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63839-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Luo H, Weeda EP, Alherech M, Anson CW, Karlen SD, Cui Y, Foster CE, Stahl SS. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. J Am Chem Soc 2021; 143:15462-15470. [PMID: 34498845 PMCID: PMC8487257 DOI: 10.1021/jacs.1c08635] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biomass pretreatment methods are commonly used to isolate carbohydrates from biomass, but they often lead to modification, degradation, and/or low yields of lignin. Catalytic fractionation approaches provide a possible solution to these challenges by separating the polymeric sugar and lignin fractions in the presence of a catalyst that promotes cleavage of the lignin into aromatic monomers. Here, we demonstrate an oxidative fractionation method conducted in the presence of a heterogeneous non-precious-metal Co-N-C catalyst and O2 in acetone as the solvent. The process affords a 15 wt% yield of phenolic products bearing aldehydes (vanillin, syringaldehyde) and carboxylic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid), complementing the alkylated phenols obtained from existing reductive catalytic fractionation methods. The oxygenated aromatics derived from this process have appealing features for use in polymer synthesis and/or biological funneling to value-added products, and the non-alkaline conditions associated with this process support preservation of the cellulose, which remains insoluble at reaction conditions and is recovered as a solid.
Collapse
Affiliation(s)
- Hao Luo
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Eric P. Weeda
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Manar Alherech
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Steven D. Karlen
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Yanbin Cui
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Cliff E. Foster
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
38
|
Costa CAE, Vega-Aguilar CA, Rodrigues AE. Added-Value Chemicals from Lignin Oxidation. Molecules 2021; 26:4602. [PMID: 34361756 PMCID: PMC8346967 DOI: 10.3390/molecules26154602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process-most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin's aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.
Collapse
Affiliation(s)
- Carina A. Esteves Costa
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| | - Carlos A. Vega-Aguilar
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| |
Collapse
|
39
|
Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mushroom ligninolytic enzymes are attractive biocatalysts that can degrade lignin through oxido-reduction. Laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase are the main enzymes that depolymerize highly complex lignin structures containing aromatic or aliphatic moieties and oxidize the subunits of monolignol associated with oxidizing agents. Among these enzymes, mushroom laccases are secreted glycoproteins, belonging to a polyphenol oxidase family, which have a powerful oxidizing capability that catalyzes the modification of lignin using synthetic or natural mediators by radical mechanisms via lignin bond cleavage. The high redox potential laccase within mediators can catalyze the oxidation of a wide range of substrates and the polymerization of lignin derivatives for value-added chemicals and materials. The chemoenzymatic process using mushroom laccases has been applied effectively for lignin utilization and the degradation of recalcitrant chemicals as an eco-friendly technology. Laccase-mediated grafting has also been employed to modify lignin and other polymers to obtain novel functional groups able to conjugate small and macro-biomolecules. In this review, the biochemical features of mushroom ligninolytic enzymes and their potential applications in catalytic reactions involving lignin and its derivatives to obtain value-added chemicals and novel materials in lignin valorization are discussed.
Collapse
|
40
|
Zhang Z, Terrasson V, Guénin E. Lignin Nanoparticles and Their Nanocomposites. NANOMATERIALS 2021; 11:nano11051336. [PMID: 34069477 PMCID: PMC8159083 DOI: 10.3390/nano11051336] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023]
Abstract
Lignin nanomaterials have emerged as a promising alternative to fossil-based chemicals and products for some potential added-value applications, which benefits from their structural diversity and biodegradability. This review elucidates a perspective in recent research on nanolignins and their nanocomposites. It summarizes the different nanolignin preparation methods, emphasizing anti-solvent precipitation, self-assembly and interfacial crosslinking. Also described are the preparation of various nanocomposites by the chemical modification of nanolignin and compounds with inorganic materials or polymers. Additionally, advances in numerous potential high-value applications, such as use in food packaging, biomedical, chemical engineering and biorefineries, are described.
Collapse
|
41
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
42
|
Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. Int J Biol Macromol 2021; 178:394-423. [PMID: 33636266 DOI: 10.1016/j.ijbiomac.2021.02.165] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The supply of affordable drinking and sufficiently clean water for human consumption is one of the world's foremost environmental problems and a large number of scientific research works are addressing this issue Various hazardous/toxic environmental contaminants in water bodies, both inorganic and organic (specifically heavy metals and dyes), have become a serious global problem. Nowadays, extensive efforts have been made to search for novel, cost effective and practical biosorbents derived from biomass resources with special attention to value added, biomass-based renewable materials. Lignin and (nano)material adorned lignin derived entities can proficiently and cost effectively remove organic/inorganic contaminants from aqueous media. As low cost of preparation is crucial for their wide applications in water/wastewater treatment (particularly industrial water), future investigations must be devoted to refining and processing the economic viability of low cost, green lignin-derived (nano)materials. Production of functionalized lignin, lignin supported metal/metal oxide nanocomposites or hydrogels is one of the effective approaches in (nano)technology. This review outlines recent research progresses, trends/challenges and future prospects about lignin-derived (nano)materials and their sustainable applications in wastewater treatment/purification, specifically focusing on adsorption and/or catalytic reduction/(photo)degradation of a variety of pollutants.
Collapse
|
43
|
Adjaoud A, Dieden R, Verge P. Sustainable Esterification of a Soda Lignin with Phloretic Acid. Polymers (Basel) 2021; 13:polym13040637. [PMID: 33669917 PMCID: PMC7924587 DOI: 10.3390/polym13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a sustainable chemical process was developed through the Fischer esterification of Protobind® lignin, a wheat straw soda lignin, and phloretic acid, a naturally occurring phenolic acid. It aimed at increasing the reactivity of lignin by enhancing the number of unsubstituted phenolic groups via a green and solvent-free chemical pathway. The structural features of the technical and esterified lignins were characterized by complementary spectroscopic techniques, including 1H, 13C, 31P, and two-dimensional analysis. A substantial increase in p-hydroxyphenyl units was measured (+64%, corresponding to an increase of +1.3 mmol g−1). A full factorial design of the experiment was employed to quantify the impact of critical variables on the conversion yield. The subsequent statistical analysis suggested that the initial molar ratio between the two precursors was the factor predominating the yield of the reaction. Hansen solubility parameters of both the technical and esterified lignins were determined by solubility assays in multiple solvents, evidencing their high solubility in common organic solvents. The esterified lignin demonstrated a better thermal stability as the onset of thermal degradation shifted from 157 to 220 °C, concomitantly to the shift of the glass transition from 92 to 112 °C. In conclusion, the esterified lignin showed potential for being used as sustainable building blocks for composite and thermoset applications.
Collapse
Affiliation(s)
- Antoine Adjaoud
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Reiner Dieden
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
| | - Pierre Verge
- Luxembourg Institute of Science and Technology, Materials Research and Technology Department, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (A.A.); (R.D.)
- Correspondence:
| |
Collapse
|
44
|
Melro E, Filipe A, Sousa D, Medronho B, Romano A. Revisiting lignin: a tour through its structural features, characterization methods and applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj06234k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A pedagogical overview of the main extraction procedures and structural features, characterization methods and state-of-the-art applications.
Collapse
Affiliation(s)
- Elodie Melro
- University of Coimbra
- CQC
- Department of Chemistry
- Rua Larga
- 3004-535 Coimbra
| | - Alexandra Filipe
- CIEPQPF
- Department of Chemical Engineering
- University of Coimbra
- Pólo II – R. Silvio Lima
- 3030-790 Coimbra
| | - Dora Sousa
- c5Lab – Edifício Central Park
- Rua Central Park 6
- 2795-242 Linda-a-Velha
- Portugal
| | - Bruno Medronho
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| | - Anabela Romano
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| |
Collapse
|
45
|
Mikhael A, Fridgen TD, Delmas M, Banoub J. Top-down lignomics analysis of the French oak lignin by atmospheric pressure photoionization and electrospray ionization quadrupole time-of-flight tandem mass spectrometry: Identification of a novel series of lignans. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4676. [PMID: 33200552 DOI: 10.1002/jms.4676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
We report herein the top-down lignomic analysis of virgin released lignin (VRL) extracted from the French oak wood using atmospheric pressure photoionization quadrupole orthogonal time-of-flight mass spectrometry (APPI-QqTOF-MS) (+ ion mode). Eight major protonated lignin oligomers were identified using the APPI-QqTOF-MS/MS of this complex VRL mixture without any kind of purification. This series of protonated oligomer ions were identified as neolignan cedrusin (1), five different aryltetralin lignans dimers (2-6), one lignan-dehydroshikimic acid complex (7), and a lignan trimer (8). Similarly, electrospray ionization (ESI)-QqTOF-MS (+ ion mode) allowed us to identify three extra aryltetralin lignan derivatives (9-11). The Kendrick mass defect analysis was used for the simplification of this complex APPI-QqTOF-MS into a compositional map, which displayed clustering points of associated ions possessing analogous elemental composition. This series of novel protonated molecules were selected and subjected to low-energy collision-induced dissociation (CID)-MS/MS analyses. The obtained gas-phase fragmentation patterns helped to tentatively assign their most likely structures. Also, it was found that the use of different APPI and ESI ambient ionization techniques enhances the ionization of different types of lignin oligomers.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Travis D Fridgen
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Michel Delmas
- Chemical Engineering Laboratory 4, University of Toulouse Inp-Ensiacet, Allée Emile Monso, Toulouse, 31432, France
| | - Joseph Banoub
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
- Science Branch, Special Projects, Fisheries and Oceans Canada, 80 East White Hills Road, St John's, Newfoundland and Labrador, A1C 5X1, Canada
| |
Collapse
|
46
|
Kumaravel S, Thiruvengetam P, Karthick K, Sankar SS, Karmakar A, Kundu S. Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels. Biotechnol Prog 2020; 37:e3111. [PMID: 33336509 DOI: 10.1002/btpr.3111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
Depolymerization of lignin biomass to its value-added chemicals and fuels is pivotal for achieving the goals for sustainable society, and therefore has acquired key interest among the researchers worldwide. A number of distinct approaches have evolved in literature for the deconstruction of lignin framework to its mixture of complex constituents in recent decades. Among the existing practices, special attention has been devoted for robust site selective chemical transformation in the complex structural frameworks of lignin. Despite the initial challenges over a period of time, oxidation and oxidative cleavage process of aromatic building blocks of lignin biomass toward the fine chemical synthesis and fuel generation has improved substantially. The development has improved in terms of cost effectiveness, milder reaction conditions, and purity of compound individuals. These aforementioned oxidative protocols mainly involve the breaking of C-C and C-O bonds of complex lignin frameworks. More precisely in the line with environmentally friendly greener approach, the catalytic oxidation/oxidative cleavage reactions have received wide spread interest for their mild and selective nature toward the lignin depolymerization. This mini-review aims to provide an overview of recent developments in the field of oxidative depolymerization of lignin under greener and environmentally benign conditions. Also, these oxidation protocols have been discussed in terms of scalability and recyclability as catalysts for different fields of applications.
Collapse
Affiliation(s)
- Sangeetha Kumaravel
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Kannimuthu Karthick
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvasundarasekar Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arun Karmakar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
47
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
48
|
Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review. CATALYSIS SURVEYS FROM ASIA 2020. [DOI: 10.1007/s10563-020-09315-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Falade AO, Ekundayo TC. Emerging biotechnological potentials of DyP-type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007-2019). Lett Appl Microbiol 2020; 72:13-23. [PMID: 32974921 DOI: 10.1111/lam.13392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Dye decolourizing peroxidase (DyP) is an emerging biocatalyst with enormous bioremediation and biotechnological potentials. This study examined the global trend of research related to DyP through a bibliometric analysis. The search term 'dye decolourizing peroxidase' or 'DyP-type peroxidase' was used to retrieve published articles between 2007 and 2019 from the Web of Science (WoS) and Scopus databases. A total of 62 articles were published within the period, with an annual growth rate of 17·6%. The highest research output was observed in 2015, which accounted for about 13% of the total output in 12 years. Germany published the highest number of articles (n = 10, 16·1%) with a total citation of 478. However, the lowest number of published articles among the top 10 countries was observed in India and Korea (n = 2, 3·2%). Research collaboration was low (collaboration index = 4·08). In addition to dye decolourizing peroxidase(s) and DyP-type peroxidase(s) (n = 33, 53·23%), the top authors keywords and research focus included lignin and lignin degradation (n = 10, 16·1 %). More so, peroxidase (n = 59, 95·2%), amino acid sequence (n = 27, 46·8%), lignin (n = 24, 38·7%) and metabolism (n = 23, 37·1%) were highly represented in keywords-plus. The most common conceptual framework from this study include characterization, lignin degradation and environmental proteomics. Apart from the inherent efficient dye-decolourizing properties, this study showed that DyP has emerging biotechnological potentials in lignin degradation and remediation of phenolic environmental pollutants, which at the moment are under explored globally.
Collapse
Affiliation(s)
- A O Falade
- Department of Biochemistry, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - T C Ekundayo
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| |
Collapse
|
50
|
Smith MD, Smith JC. Effects of sodium and calcium chloride ionic stresses on model yeast membranes revealed by molecular dynamics simulation. Chem Phys Lipids 2020; 233:104980. [PMID: 33038307 DOI: 10.1016/j.chemphyslip.2020.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
As efforts to move a renewable economy grow, it will be necessary to make use of microbial conversion strategies for the production of novel materials or the upgrading of waste to high-value products. One critical technical challenge currently limiting waste upgrading remains the difficulty in obtaining single-pot conversion techniques where physical, chemical, and biological conversion are performed in a single step. To overcome this challenge, a detailed understanding of how different stresses impact microbial membrane stability will be necessary. Using all-atom molecular dynamics simulations, we examine the impacts of moderate concentrations of NaCl and CaCl2on a model yeast plasma membrane. Weak, though statistically significant, changes in membrane morphology and dynamics functions are observed that are consistent with swelling and stiffening. Additionally, an examination of the ion-lipid contacts and the behavior of water at the water-membrane interface suggests that the impacts of these common salts may, in part, be mediated through changes to water-membrane hydrogen-bonding and hydration water dynamics.
Collapse
Affiliation(s)
- Micholas Dean Smith
- Department of Biochemistry, Molecular & Cellular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, United States.
| | - Jeremy C Smith
- Department of Biochemistry, Molecular & Cellular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, United States
| |
Collapse
|