1
|
Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine (Lond) 2023; 18:1495-1514. [PMID: 37830424 DOI: 10.2217/nnm-2023-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.
Collapse
Affiliation(s)
- Digvijay Dattatray Desai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Mugdha Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, United Kingdom
| |
Collapse
|
2
|
Nsairat H, Lafi Z, Al-Sulaibi M, Gharaibeh L, Alshaer W. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chem 2023; 424:136438. [PMID: 37244187 DOI: 10.1016/j.foodchem.2023.136438] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
3
|
Carvalho Feitosa R, Souza Ribeiro Costa J, van Vliet Lima M, Sawa Akioka Ishikawa E, Cogo Müller K, Bonin Okasaki F, Sabadini E, Garnero C, Longhi MR, Lavayen V, da Silva-Júnior AA, Oliveira-Nascimento L. Supramolecular Arrangement of Doxycycline with Sulfobutylether-β-Cyclodextrin: Impact on Nanostructuration with Chitosan, Drug Degradation and Antimicrobial Potency. Pharmaceutics 2023; 15:pharmaceutics15041285. [PMID: 37111770 PMCID: PMC10144562 DOI: 10.3390/pharmaceutics15041285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Doxycycline (DX) is a well-established and broad-spectrum antimicrobial drug. However, DX has drawbacks, such as physicochemical instability in aqueous media and bacterial resistance. The inclusion of drugs in cyclodextrin complexes and their loading into nanocarriers can overcome these limitations. Thus, we studied the DX/sulfobutylether-β-CD (SBE-β-CD) inclusion complex for the first time and used it to reticulate chitosan. The resulting particles were evaluated by their physicochemical characteristics and antibacterial activity. DX/SBE-β-CD complexes were characterized by nuclear magnetic resonance, infrared spectroscopy, thermal analysis, X-ray diffraction, and scanning electron microscopy (SEM), whereas DX-loaded nanoparticles were characterized by dynamic light scattering, SEM, and drug content. The partial inclusion of the DX molecule in CD happened in a 1:1 proportion and brought increased stability to solid DX upon thermal degradation. Chitosan-complex nanoparticles measured approximately 200 nm, with a narrow polydispersity and particles with sufficient drug encapsulation for microbiological studies. Both formulations preserved the antimicrobial activity of DX against Staphylococcus aureus, whereas DX/SBE-β-CD inclusion complexes were also active against Klebsiella pneumoniae, indicating the potential use of these formulations as drug delivery systems to treat local infections.
Collapse
Affiliation(s)
- Renata Carvalho Feitosa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | | | - Marcelo van Vliet Lima
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | | | - Karina Cogo Müller
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| | - Fernando Bonin Okasaki
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Edvaldo Sabadini
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Claudia Garnero
- Research and Pharmaceutical Technology Development Unit (UNITEFA, CONICET-UNC) and Department of Pharmacy, Faculty of Chemical Sciences, National University of Cordoba, Cordoba X5000HUA, Argentina
| | - Marcela Raquel Longhi
- Research and Pharmaceutical Technology Development Unit (UNITEFA, CONICET-UNC) and Department of Pharmacy, Faculty of Chemical Sciences, National University of Cordoba, Cordoba X5000HUA, Argentina
| | - Vladimir Lavayen
- Department of Inorganic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, RN, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil
| |
Collapse
|
4
|
Secerli J, Adatepe Ş, Altuntas S, Topal GR, Erdem O, Bacanlı M. In vitro toxicity of naringin and berberine alone, and encapsulated within PMMA nanoparticles. Toxicol In Vitro 2023; 89:105580. [PMID: 36893932 DOI: 10.1016/j.tiv.2023.105580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Phytochemical compounds, such as naringin and berberine, have been used for many years due to their antioxidant activities, and consequently, beneficial health effects. In this study, it was aimed to evaluate the antioxidant properties of naringin, berberine and poly(methylmethacrylate) (PMMA) nanoparticles (NPs) encapsulated with naringin or berberine and their possible cytotoxic, genotoxic, and apoptotic effects on mouse fibroblast (NIH/3 T3) and colon cancer (Caco-2) cells. According to the results of the study, it was found that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition antioxidant activity of naringin, berberine, and naringin or berberine encapsulated PMMA NPs, was significantly increased at higher tested concentrations due to the antioxidant effects of naringin, berberine and naringin or berberine encapsulated PMMA NPs. As a result of the cytotoxicity assay, after 24-, 48- and 72-h of exposure, all of the studied compounds caused cytotoxic effects in both cell lines. Genotoxic effects of studied compounds were not registered at lower tested concentrations. Based on these data, polymeric nanoparticles encapsulated with naringin or berberine may contribute to new treatment approaches for cancer, but further in vivo and in vitro research is required.
Collapse
Affiliation(s)
- Jülide Secerli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Şeyma Adatepe
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Sevde Altuntas
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Türkiye; Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Türkiye
| | - Gizem Rüya Topal
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Onur Erdem
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Türkiye.
| |
Collapse
|
5
|
Pluronics-Based Drug Delivery Systems for Flavonoids Anticancer Treatment. Gels 2023; 9:gels9020143. [PMID: 36826313 PMCID: PMC9957264 DOI: 10.3390/gels9020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This research concerns the investigation of the preparation of polymeric nanocarriers containing a flavonoid-naringenin, xanthohumol or isoxanthohumol-based on Pluronics by the thin-film formation method. The size of the formed micelles and their stability upon dilution were evaluated using Dynamic light scattering (DLS) analysis; the high values of the drug loading and the encapsulation efficiency confirmed that the proposed systems of flavonoids delivery consisting of Pluronic P123 and F127 nanomicelles could effectively distribute the drug into tumour tissues, which makes these nanocarriers ideal candidates for passive targeting of cancer cells by the enhanced permeation and retention (EPR) effect. The in vitro cytotoxicity of proposed flavonoids in the Pluronic formulations was investigated by the SRB assay with human colon cancer cells. We designed mixed polymeric micelles, which was a successful drug delivery system for the case of naringenin not being able to enhance the bioavailability and cytotoxic activity of xanthohumol and isoxanthohumol. Furthermore, it was observed that the higher amount of polymer in the formulation achieved better cytotoxic activity.
Collapse
|
6
|
Optimization of Naringenin Nanoparticles to Improve the Antitussive Effects on Post-Infectious Cough. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123736. [PMID: 35744861 PMCID: PMC9228777 DOI: 10.3390/molecules27123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized. The NRG (30 mg) and D-α-tocopherol polyethylene glycol succinate (10 mg) were wet-milled in deionized water (2 mL) with 10 g of zirconia beads via stirring at 50 °C for 2 h at a stirring speed of 300 rpm. As a result, the NRG NPs, with sheet-like morphology and a diameter of approximately 182.2 nm, were successfully prepared. The NRG NPs were stable in the gastrointestinal system and were released effectively after entering the blood circulation. In vivo experiments indicated that the NRG NPs have good antitussive effects. The cough inhibition rate after the administration of the NRG NPs was 66.7%, cough frequency was three times lower, and the potential period was 1.8 times longer than that in the blank model group. In addition, the enzyme biomarkers and histological analysis results revealed that the NRG NPs can effectively regulate the inflammatory and oxidative stress response. In conclusion, the NRG NPs exhibited good oral bioavailability and promoted antitussive and anti-inflammatory effects.
Collapse
|
7
|
Zakaria FA, Hamidon TS, Hussin MH. Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zhou L, Li A, Wang H, Sun W, Zuo S, Li C. Preparation and characterization of luteolin-loaded MPEG-PCL-g-PEI micelles for oral Candida albicans infection. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Nguyen OOT, Tran KD, Ha NT, Doan SM, Dinh TTH, Tran TH. Oral cavity: An open horizon for nanopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00530-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Italiya KS, Singh AK, Chitkara D, Mittal A. Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat. AAPS PharmSciTech 2021; 22:114. [PMID: 33763759 DOI: 10.1208/s12249-021-01980-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lisofylline (LSF) is an anti-inflammatory molecule with high aqueous solubility and rapid metabolic interconversion to its parent drug, pentoxifylline (PTX) resulting in very poor pharmacokinetic (PK) parameters, necessitating high dose and dosing frequency. In the present study, we resolved the physicochemical and pharmacokinetic limitations associated with LSF and designed its oral dosage form as a tablet for effective treatment in type 1 diabetes (T1D). Self-assembling polymeric micelles of LSF (lisofylline-linoleic acid polymeric micelles (LSF-LA PLM)) were optimized for scale-up (6 g batch size) and lyophilized followed by compression into tablets. Powder blend and tablets were evaluated as per USP. LSF-LA PLM tablet so formed was evaluated for in vitro release in simulated biological fluids (with enzymes) and for cell viability in MIN-6 cells. LSF-LA PLM in tablet formulation was further evaluated for intestinal permeability (in situ) along with LSF and LSF-LA self-assembled micelles (SM) as controls in a rat model using single-pass intestinal perfusion (SPIP) study. SPIP studies revealed 1.8-fold higher oral absorption of LSF-LA from LSF-LA PLM as compared to LSF-LA SM and ~5.9-fold higher than LSF (alone) solution. Pharmacokinetic studies of LSF-LA PLM tablet showed greater Cmax than LSF, LSF-LA, and LSF-LA PLM. Designed facile LSF-LA PLM tablet dosage form has potential for an immediate decrease in the postprandial glucose levels in patients of T1D.
Collapse
|
11
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
12
|
Fan H, Zhang P, Zhou L, Mo F, Jin Z, Ma J, Lin R, Liu Y, Zhang J. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharm Dev Technol 2020; 25:547-555. [PMID: 31928119 DOI: 10.1080/10837450.2020.1715427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Naringin (NG) has been proved to have numerous notable biological effects, including anti-inflammatory effect, anti-cancer effect, and anti-ulcer effect, yet there are no clinical preparations of naringin due to its poor solubility and low dissolution rate after oral administration. In this study, in order to overcome these problems, NG was encapsulated into MPEG-PCL micelles (NGMs) by using a thin-film hydration method. NMGs were in a typical core-shell structure, with a mall particle size (23.95 ± 0.51 nm), high drug loading, and encapsulation efficiency. In vitro release of NGMs indicated that the dissolution of NG was increased after being encapsulated in the micelles. NGMs were nontoxic in the cytotoxicity and histopathology studies. Furthermore, when the freeze-dried NGMs were compressed into buccal tablets (NGBTs) by direct compression, the release speed of NG under simulated oral cavity condition from NGBTs was higher than the control tablets, with the accumulated dissolution at 93.13% in 8 hours. In conclusion, NGMs and NGBTs represent a promising drug delivery system for NG, which has the potential to improve the current treatment of oral diseases.
Collapse
Affiliation(s)
- Huihui Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peipei Zhang
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Li Zhou
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Fei Mo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhen Jin
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Rong Lin
- Department of Pharmacology, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
13
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
14
|
Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132:110646. [PMID: 31252025 DOI: 10.1016/j.fct.2019.110646] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022]
Abstract
Neurological illnesses are multifactorial incurable debilitating disorders that may cause neurodegeneration. These diseases influence approximately 30 million people around the world. Despite several therapies, effective management of such disorders remains a global challenge. Thus, natural products might offer an alternative therapy for the treatment of various neurological disorders. Polyphenols, such as curcumin, resveratrol, myricetin, mangiferin and naringin (NRG) have been shown to possess promising potential in the treatment of neurogenerative illness. In this review, we have targeted the therapeutic potential of naringin as a neuroprotective agent. The overall neuroprotective effects and different possible underlying mechanisms related to NRG are discussed. In light of the strong evidence for the neuropharmacological efficacy of NRG in various experimental paradigms, it is concluded that this molecule should be further considered and studied as a potential candidate for neurotherapeutics, focusing on mechanistic and clinical trials to ascertain its efficacy.
Collapse
|
15
|
Shi Y, Xue J, Liu Z, Du M, Xu L, Sun Q, Liu Z, Shang Q. Polyelectrolyte Complex Nanoparticles Based on Methoxy Poly(Ethylene Glycol)-B-Poly (ε-Caprolactone) Carboxylates and Chitosan for Delivery of Tolbutamide. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1799-1811. [PMID: 30141739 DOI: 10.1080/09205063.2018.1498720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, a novel chitosan (CS)-modified nanoparticles (NPs) were developed to orally deliver tolbutamide (TOL). Methoxy poly(ethylene glycol)- b-poly(ε-caprolactone) carboxylates (mPEG2000-b-PCL4000) was synthesized via an esterification reaction. CS-modified mPEG2000-b-PCL4000-COOH NPs (CS@NPs) were fabricated by injecting mPEG2000-b-PCL4000-COOH NPs suspension (1.0 mg/mL) into CS solution (1.0 mg/mL, pH 5.0). Fourier transform infrared spectroscopy (FTIR) spectra were used to confirm the obtaining of mPEG2000-b-PCL4000-COOH. Transmission electron microscope (TEM) was carried out to observe morphology of all NPs. Nano ZS90 Malvern ParticleSizer were used to monitor the size distribution of obtained NPs. Thermogravimetry analysis (TGA) was performed to investigate the thermostability of CS@NPs. In vitro TOL release profiles were carried out in pH 1.2 and 7.4 buffers. FTIR spectra confirmed the obtaining of mPEG2000-b-PCL4000-COOH. TGA curves indicated that the protection of CS shells improved the thermostability of mPEG2000-b-PCL4000-COOH NPs. Cell tests indicated the CS@NPs had no obvious cytotoxicity, and they were easily taken up by 293T cells. In vitro release profiles showed that 91.0 ± 1.9% of encapsulated TOL were released from TOL-CS@NPs in pH 7.4 buffer. Therefore, the positive potential of CS@NPs could increase their combining capacity with intestinal mucosal cells. Finally, these NPs would improve the bioavailability of hydrophobic drugs.
Collapse
Affiliation(s)
- Yongli Shi
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Jintao Xue
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Zhaojie Liu
- b Department of Pharmacy , The First Affiliated Hospital of Xinxiang Medical University , Weihui , China
| | - Mengjiao Du
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Lanting Xu
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Qianqian Sun
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Zhaomin Liu
- a College of Pharmacy , Xinxiang Medical University , Xinxiang , P.R. China
| | - Qing Shang
- c School of Chemical and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang , P.R. China
| |
Collapse
|
16
|
Preparation, characterization and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl Microbiol Biotechnol 2017; 101:7357-7370. [DOI: 10.1007/s00253-017-8463-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
|
17
|
El-Nahas AE, Allam AN, El-Kamel AH. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: formulation, characterisation and ex vivo permeation. J Microencapsul 2017; 34:463-474. [PMID: 28691562 DOI: 10.1080/02652048.2017.1345996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eudragit-loaded silymarin nanoparticles (SNPs) and their formulation into buccal mucoadhesive tablets were investigated to improve the low bioavailability of silymarin through buccal delivery. Characterisation of SNPs and silymarin buccal tablets (SBTs) containing the optimised NPs were performed. Ex vivo permeability of nominated SBTs were assessed using chicken pouch mucosa compared to SNPs and drug suspension followed by histopathological examination. Selected SNPs had a small size (<150 nm), encapsulation effciency (>77%) with drug release of about 90% after 6 h. For STBs, all physicochemical parameters were satisfactory for different polymers used. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state. Ex vivo permeation significantly emphasised the great enhancement of silymarin permeation after NPs formation and much more increase after formulating into BTs relative to the corresponding drug dispersion with confirmed membrane integrity. Incorporation of SNPs into BTs could be an efficient vehicle for delivery of silymarin.
Collapse
Affiliation(s)
- Amira E El-Nahas
- a Department of Pharmaceutics, Faculty of Pharmacy , Damanhur University , Damanhur , Egypt
| | - Ahmed N Allam
- b Department of Pharmaceutics, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Amal H El-Kamel
- b Department of Pharmaceutics, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| |
Collapse
|
18
|
Gan M, Zhang W, Wei S, Dang H. The influence of mPEG-PCL and mPEG-PLGA on encapsulation efficiency and drug-loading of SN-38 NPs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:389-397. [PMID: 27043776 DOI: 10.3109/21691401.2016.1167700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The influence of mPEG-PCL and mPEG-PLGA on encapsulation efficiency and drug-loading of nanoparticles was very important. SN-38 NPs were prepared from a series of diblock copolymers: mPEG1000-PLGA2000, mPEG2000-PCLs, mPEG5000-PCLs, mPEG2000-PLGAs, and mPEG5000-PLGAs by the thin film-hydration method. The prepared nanoparticles were characterized by morphology, size, encapsulation efficiency, drug-loading, and in vitro release behavior. This experiment suggested that the encapsulation efficiency and drug-loading of SN-38 NPs were attained the maximum values when the ratio of hydrophilic to hydrophobic block was between 1:2 and 1:3.
Collapse
Affiliation(s)
- Mengyue Gan
- a School of Pharmacy, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Wenping Zhang
- b Department of Pharmacy , Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| | - Shijie Wei
- b Department of Pharmacy , Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| | - Hongwan Dang
- b Department of Pharmacy , Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
19
|
Zhang P, Cai S, Song L, Zhang L, Fan H, Zhou L, Lin R, Yang G, Bian X, Wang W, Zhang J. Solubility of dihydromyricetin in ethanol and water mixtures from 288.15 to 323.15K. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|