1
|
Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug Delivery Systems for Localized Cancer Combination Therapy. ACS APPLIED BIO MATERIALS 2023; 6:934-950. [PMID: 36791273 PMCID: PMC10373430 DOI: 10.1021/acsabm.2c00973] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Collapse
Affiliation(s)
- Ryan N. Woodring
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G. Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Ataei M, Roufogalis BD, Majeed M, Shah MA, Sahebkar A. Curcumin Nanofibers: A Novel Approach to Enhance the Anticancer Potential and Bioavailability of Curcuminoids. Curr Med Chem 2023; 30:286-303. [PMID: 35319355 DOI: 10.2174/0929867329666220322110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/27/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Development of novel treatment methods for cancer is needed given the limitations of current treatment methods, including side effects and chemotherapeutic resistance, which may provide new hope to cancer patients. Cancer is the second leading cause of global mortality. Curcumin, the active ingredient of turmeric, has been used since ancient times for various therapeutic purposes. Several studies have identified its activity against cancer. Despite the established anticancer activity of curcumin, its low aqueous solubility and bioavailability are barriers to its effectiveness. In an attempt to solve this problem, many studies have formulated curcumin nanofiber preparations using a variety of methods. Electrospinning is a simple and affordable method for the production of nanofibers. Studies have shown increased curcumin bioavailability in nanofibers resulting from their high surface/volume ratio and porosity. We have undertaken a detailed review of studies on the anticancer effects of curcumin nanofibers. Curcumin acts by inhibiting various biological cancer pathways, including NF-κB, mTOR, complex I, cytokines, expression of p-p65, Ki67, and angiogenesis-associated genes. It also induces apoptosis through activation of caspase pathways and ROS production in cancer cells. Curcumin-loaded PLA50/PVP50/Cur15 nanofibers were investigated in breast cancer, one of the most studied cancers, and was shown to have significant effects on the widely used HeLa-cell line. Most of the studies undertaken have been performed in cell lines in vitro, while relatively few animal studies have been reported. More preclinical and clinical studies are needed to evaluate the anticancer activity of curcumin nanofibers. Amongst studies undertaken, a variety of curcumin nanofibers of various formulations have been shown to suppress a variety of cancer types. Overall, curcumin nanofibers have been found to be more efficient than free curcumin. Thus, curcumin nanofibers have been observed to improvise cancer treatment, offering great potential for effective cancer management. Further studies, both in vitro and in vivo, involving curcumin nanofibers have the potential to benefit cancer management.
Collapse
Affiliation(s)
- Mahshid Ataei
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Toxicology & Pharmacology, School of Pharmacy and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | | | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Li J, Liu Y, Abdelhakim HE. Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules 2022; 27:1803. [PMID: 35335167 PMCID: PMC8952381 DOI: 10.3390/molecules27061803] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most serious health problems and the second leading cause of death worldwide, and with an ageing and growing population, problems related to cancer will continue. In the battle against cancer, many therapies and anticancer drugs have been developed. Chemotherapy and relevant drugs are widely used in clinical practice; however, their applications are always accompanied by severe side effects. In recent years, the drug delivery system has been improved by nanotechnology to reduce the adverse effects of the delivered drugs. Among the different candidates, core-sheath nanofibres prepared by coaxial electrospinning are outstanding due to their unique properties, including their large surface area, high encapsulation efficiency, good mechanical property, multidrug loading capacity, and ability to govern drug release kinetics. Therefore, encapsulating drugs in coaxial electrospun nanofibres is a desirable method for controlled and sustained drug release. This review summarises the drug delivery applications of coaxial electrospun nanofibres with different structures and drugs for various cancer treatments.
Collapse
Affiliation(s)
| | | | - Hend E. Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (Y.L.)
| |
Collapse
|
4
|
Miguel SP, Loureiro J, Ribeiro MP, Coutinho P. Osmundea sp. macroalgal polysaccharide-based nanoparticles produced by flash nanocomplexation technique. Int J Biol Macromol 2022; 204:9-18. [PMID: 35122803 DOI: 10.1016/j.ijbiomac.2022.01.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/29/2022]
Abstract
The macroalgae-derived polysaccharides' biological potential has been explored due to their attractive intrinsic properties such as biocompatibility, biodegradability, and their ability to conjugate with other compounds. In particular, in the drug delivery systems field, the anionic macroalgae polysaccharides have been combined with cationic compounds through ionotropic gelation and/or bulk mixing. However, these techniques did not assure reproducibility, and the stability of nanoparticles is undesired. To overcome these limitations, herein, the polysaccharide extracted from Osmundea sp. was used to produce nanoparticles through the flash nanocomplexation technique. This approach rapidly mixed the negative charge of macroalgae polysaccharide with a positive chitosan charge on a millisecond timescale. Further, diclofenac (an anti-inflammatory drug) was also incorporated into complex nanoparticles. Overall, the gathered data showed that hydrodynamic diameter nanoparticles values lower than 100 nm, presenting a narrow size distribution and stability. Also, the diclofenac exhibited a targeted and sustained release profile in simulating inflammatory conditions. Likewise, the nanoparticles showed excellent biological properties, evidencing their suitability to be used to treat inflammatory skin diseases.
Collapse
Affiliation(s)
- Sónia P Miguel
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Jorge Loureiro
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| | - Maximiano P Ribeiro
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-UDI/IPG, Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
5
|
5-Fluorouracil Loaded Biogenic and Albumin Capped Gold Nanoparticles Using Bacterial Enzyme—In Vitro-In Silico Gastroplus® Simulation and Prediction. Processes (Basel) 2020. [DOI: 10.3390/pr8121579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study investigated in situ biosynthesis of albumin capped 5-fluorouracil (5-FU) loaded gold nanoparticles (NPs) using bacterial extract for enhanced efficacy against MCF-7 and in silico prediction using a GastroPlus® software. The optimized formulations were characterized for morphology, size, zeta potential, drug loading (%DL) and entrapment (%EE), compatibility, in vitro drug release, in vitro hemolysis, cellular toxicity and apoptosis studies. The results exhibited highly dispersed albumin capped mono-metallic stable NPs. Spherical size, negative zeta potential and polydispersity index were in range of 38.25–249.62 nm, 18.18–29.87 mV and 0.11–0.283, respectively. F11, F7 and F3 showed a progressive increase in %DL and %EE with increased concentration of the cellular lysate (100% > 50% > 10%). The drug release was relatively extended over 48 h as compared to drug solution (96.64% release within 5 h). The hemolysis result ensured hemocompatibility (<14%) at the explored concentration. The biogenic F11 was more cytotoxic (81.99% inhibition by F11 and 72.04% by pure 5-FU) to the MCF-7 cell lines as compared to others which may be attributed to the preferential accumulation by the tumor cell and capped albumin as the source of energy to the cancer cells. Finally, GastroPlus® predicted the key factors responsible for improved pharmacokinetics parameters and regional absorption from various segments of human intestine. Thus, the approach can be more efficacious and suitable to control breast cancer when administered transdermally or orally.
Collapse
|
6
|
Monfared M, Taghizadeh S, Zare-Hoseinabadi A, Mousavi SM, Hashemi SA, Ranjbar S, Amani AM. Emerging frontiers in drug release control by core-shell nanofibers: a review. Drug Metab Rev 2019; 51:589-611. [PMID: 31296075 DOI: 10.1080/03602532.2019.1642912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, core-shell (CS) nanofiber has widely been used as a carrier for controlled drug release. This outstanding attention toward CS nanofiber is mainly due to its tremendous significance in controllable drug release in specific locations. The major advantage of CS nanofibers is forming a highly porous mesh, boosting its performance for many applications, due to its large surface-to-volume ratio. This inherently high ratio has prompted electrospun fibers to be considered one of the best drug-delivery-systems available, with the capacity to enhance properties such as cell attachment, drug loading, and mass transfer. Using electrospun fibers as CS nanofibers to incorporate different cargos such as antibiotics, anticancer agents, proteins, DNA, RNA, living cells, and diverse growth factors would considerably satisfy the need for a universal carrier in the field of nanotechnology. In addition to their high surface area, other benefit included in these nanofibers is the ability to trap drugs, easily controlled morphology, and their biomimetic characteristics. In this review, by taking the best advantages of the preparation and uses of CS nanofibers, a novel work in the domain of the controlled drug delivery by nanofiber-based scaffolds is presented.
Collapse
Affiliation(s)
- Mohammad Monfared
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Ranjbar
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Miguel SP, Simões D, Moreira AF, Sequeira RS, Correia IJ. Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int J Biol Macromol 2019; 121:524-535. [DOI: 10.1016/j.ijbiomac.2018.10.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023]
|
8
|
Mohiyuddin S, Naqvi S, Packirisamy G. Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2499-2515. [PMID: 30345213 PMCID: PMC6176813 DOI: 10.3762/bjnano.9.233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In the past few decades, the successful theranostic application of nanomaterials in drug delivery systems has significantly improved the antineoplastic potency of conventional anticancer therapy. Several mechanistic advantages of nanomaterials, such as enhanced permeability, retention, and low toxicity, as well as surface engineering with targeting moieties, can be used as a tool in enhancing the therapeutic efficacy of current approaches. Inorganic calcium phosphate nanoparticles have the potential to increase the therapeutic potential of antiproliferative drugs due to their excellent loading efficiency, biodegradable nature and controlled-release behaviour. Herein, we report a novel system of 5-fluorouracil (5-FU)-loaded calcium phosphate nanoparticles (CaP@5-FU NPs) synthesized via a reverse micelle method. The formation of monodispersed, spherical, crystalline nanoparticles with an approximate diameter of 160-180 nm was confirmed by different methods. The physicochemical characterization of the synthesized CaP@5-FU NPs was done with transmission electron microscopy (TEM), dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The antineoplastic potential of the CaP@5-FU NPs against colorectal and lung cancer cells was reported. The CaP@5-FU NPs were found to inhibit half the population (IC50) of lung adenocarcinoma (A549) cells at 32 μg/mL and colorectal (HCT-15) cancer cells at 48.5 μg/mL treatment. The apoptotic induction of CaP@5-FU NPs was confirmed with acridine orange/ethidium bromide (AO/EB) staining and by examining the morphological changes with Hoechst and rhodamine B staining in a time-dependent manner. The apparent membrane bleb formation was observed in FE-SEM micrographs. The up-regulated proapoptotic and down-regulated antiapoptotic gene expressions were further confirmed with semiquantitative reverse transcriptase polymerase chain reaction (PCR). The increased intracellular reactive oxygen species (ROS) were quantified via flow cytometry upon CaP@5-FU NP treatment. Likewise, the cell cycle analysis was performed to confirm the enhanced apoptotic induction. Our study concludes that the calcium phosphate nanocarriers system, i.e. CaP@5-FU NPs, has higher antineoplastic potential as compared to 5-FU alone and can be used as an improved alternative to the antimitotic drug, which causes severe side effects when administrated alone.
Collapse
Affiliation(s)
- Shanid Mohiyuddin
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Saba Naqvi
- Nanobiotechnology Laboratory, Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Nanobiotechnology Laboratory, Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0830-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Ghorani B, Goswami P, Blackburn RS, Russell SJ. Enrichment of cellulose acetate nanofibre assemblies for therapeutic delivery of l-tryptophan. Int J Biol Macromol 2018; 108:1-8. [DOI: 10.1016/j.ijbiomac.2017.11.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
11
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
12
|
Shoba E, Lakra R, Syamala Kiran M, Korrapati PS. Fabrication of core–shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomed Mater 2017; 12:035005. [DOI: 10.1088/1748-605x/aa6684] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Tirkey B, Bhushan B, Uday Kumar S, Gopinath P. Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:507-515. [DOI: 10.1016/j.msec.2016.12.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
|
14
|
Kandhasamy S, Ramanathan G, Muthukumar T, Thyagarajan S, Umamaheshwari N, Santhanakrishnan VP, Sivagnanam UT, Perumal PT. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:70-85. [PMID: 28254336 DOI: 10.1016/j.msec.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a-5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: 1T46) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the proliferation of cancerous cells. We anticipate that our results can provide better potential research in nanomaterial based cancer research.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu, India
| | - Giriprasath Ramanathan
- Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu, India
| | - Thangavelu Muthukumar
- Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University, Sweden
| | | | - Narayanan Umamaheshwari
- Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu, India
| | | | | | | |
Collapse
|
15
|
Aytac Z, Uyar T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int J Pharm 2017; 518:177-184. [DOI: 10.1016/j.ijpharm.2016.12.061] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
|
16
|
Li H, Zhu J, Chen S, Jia L, Ma Y. Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra12394a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper presents a new nanofabrication method for dual drug loaded regenerated silk fibroin (RSF) nanofibers, based on a simple, colloid-electrospinning technique.
Collapse
Affiliation(s)
- Huijun Li
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Jingxin Zhu
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Song Chen
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Lan Jia
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Yanlong Ma
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| |
Collapse
|
17
|
Bhushan B, Nandhagopal S, Kannan RR, Gopinath P. Therapeutic Nanozyme: Antioxidative and cytoprotective effects of nanoceria against hydrogen peroxide induced oxidative stress in fibroblast cells and in zebrafish. ChemistrySelect 2016. [DOI: 10.1002/slct.201600736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory; Centre for Nanotechnology; Indian Institute of Technology Roorkee
| | - Soundharapandiyan Nandhagopal
- Molecular and Nanomedicine Research Unit; Centre for Nanoscience and Nanotechnology; Sathyabama University; Rajiv Gandhi Salai Chennai - 600119, TN India
| | - Rajaretinam Rajesh Kannan
- Molecular and Nanomedicine Research Unit; Centre for Nanoscience and Nanotechnology; Sathyabama University; Rajiv Gandhi Salai Chennai - 600119, TN India
| | - P. Gopinath
- Nanobiotechnology Laboratory; Centre for Nanotechnology; Indian Institute of Technology Roorkee
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee Uttarakhand- 247667 India
| |
Collapse
|
18
|
Sukumar UK, Gopinath P. Field-actuated antineoplastic potential of smart and versatile PEO–bPEI electrospun scaffold by multi-staged targeted co-delivery of magnetite nanoparticles and niclosamide–bPEI complexes. RSC Adv 2016. [DOI: 10.1039/c6ra05006a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A PEO–bPEI based composite nanofiber scaffold has been realized for field actuated targeted delivery of magnetite nanoparticles and bPEI–niclosamide complexes for efficient management of cancer prognosis.
Collapse
Affiliation(s)
- Uday Kumar Sukumar
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
19
|
Dubey P, Gopinath P. Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro. J Mater Chem B 2016; 4:726-742. [DOI: 10.1039/c5tb02351c] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intrinsic property of many anticancer drugs including niclosamide is poor water solubility, which hindered their translation from laboratory to clinics.
Collapse
Affiliation(s)
- Poornima Dubey
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
20
|
Sukumar UK, Packirisamy G. Bioactive Core-Shell Nanofiber Hybrid Scaffold for Efficient Suicide Gene Transfection and Subsequent Time Resolved Delivery of Prodrug for Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18717-31. [PMID: 26234345 DOI: 10.1021/acsami.5b05280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanofiber scaffold's ability to foster seemingly nonexistent interface with the cells enables them to effectively deliver various bioactive molecules to cells in the vicinity. Among such bioactive molecules, therapeutically active nucleic acid has been the most common candidate. In spite of such magnanimous efforts in this field, it remains a paradox that suicide gene delivery by nanofibers has never been sought for anticancer application. To investigate such a possibility, in the present work, a composite core-shell nanofiberous scaffold has been realized which could efficiently transfect suicide gene into cancer cells and simultaneously deliver prodrug, 5-Fluorocytosine (5-FC) in a controlled and sustained manner. The scaffold's ability to instigate apoptosis by suicide gene therapy in nonsmall lung cancer cells (A549) was ascertained at both phenotypic and genotypic levels. A cascade of events starting from suicide gene polyplex release from nanofibers, transfection, and expression of cytosine deaminase-uracil phosphoribosyltransferase (CD::UPRT) suicide gene by A549; subsequent prodrug release; and its metabolic conversion into toxic intermediates which finally culminates in host cells apoptosis has been monitored in a time-dependent manner. This work opens up new application avenues for nanofiber-based scaffolds which can effectively manage cancer prognosis.
Collapse
Affiliation(s)
- Uday Kumar Sukumar
- Nanobiotechnology Laboratory, Centre for Nanotechnology, ‡Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee, Uttarakhand-247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, ‡Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee, Uttarakhand-247667, India
| |
Collapse
|
21
|
Kumar SU, Gopinath P. Controlled delivery of bPEI–niclosamide complexes by PEO nanofibers and evaluation of its anti-neoplastic potentials. Colloids Surf B Biointerfaces 2015; 131:170-81. [DOI: 10.1016/j.colsurfb.2015.04.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/15/2022]
|
22
|
Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater 2015; 16:103-16. [PMID: 25617805 DOI: 10.1016/j.actbio.2014.12.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/28/2014] [Accepted: 12/30/2014] [Indexed: 11/21/2022]
Abstract
A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration.
Collapse
|
23
|
Bhushan B, Dubey P, Kumar SU, Sachdev A, Matai I, Gopinath P. Bionanotherapeutics: niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Adv 2015. [DOI: 10.1039/c4ra15233f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work niclosamide was encapsulated into albumin nanoparticles through a desolvation method to improve its scope of application in cancer therapy.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Poornima Dubey
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - S. Uday Kumar
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Abhay Sachdev
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
24
|
Matai I, Sachdev A, Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00360h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer based multicomponent therapeutic agent forin vitrocancer therapy applications.
Collapse
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Abhay Sachdev
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
25
|
Bhushan B, Gopinath P. Tumor-targeted folate-decorated albumin-stabilised silver nanoparticles induce apoptosis at low concentration in human breast cancer cells. RSC Adv 2015. [DOI: 10.1039/c5ra16936d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current study exploits the folate-mediated delivery of bovine serum albumin (BSA) stabilized Ag NPs and thereby overcomes various drawbacks associated with non-specific targeting.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|