1
|
Palla S, Surya DV, Pritam K, Puppala H, Basak T, Palla VCS. A critical review on the influence of operating parameters and feedstock characteristics on microwave pyrolysis of biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57570-57593. [PMID: 38888826 DOI: 10.1007/s11356-024-33607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Biomass pyrolysis is the most effective process to convert abundant organic matter into value-added products that could be an alternative to depleting fossil fuels. A comprehensive understanding of the biomass pyrolysis is essential in designing the experiments. However, pyrolysis is a complex process dependent on multiple feedstock characteristics, such as biomass consisting of volatile matter, moisture content, fixed carbon, and ash content, all of which can influence yield formation. On top of that, product composition can also be affected by the particle size, shape, susceptors used, and pre-treatment conditions of the feedstock. Compared to conventional pyrolysis, microwave-assisted pyrolysis (MAP) is a novel thermochemical process that improves internal heat transfer. MAP experiments complicate the operation due to additional governing factors (i.e. operating parameters) such as heating rate, temperature, and microwave power. In most instances, a single parameter or the interaction of parameters, i.e. the influence of other parameter integration, plays a crucial role in pyrolysis. Although various studies on a few operating parameters or feedstock characteristics have been discussed in the literature, a comprehensive review still needs to be provided. Consequently, this review paper deconstructed biomass and its sources, including microwave-assisted pyrolysis, and discussed the impact of operating parameters and biomass properties on pyrolysis products. This paper addresses the challenge of handling multivariate problems in MAP and delivers solutions by application of the machine learning technique to minimise experimental effort. Techno-economic analysis of the biomass pyrolysis process and suggestions for future research are also discussed.
Collapse
Affiliation(s)
- Sridhar Palla
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy Visakhapatnam, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Dadi Venkata Surya
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Kocherlakota Pritam
- Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Harish Puppala
- 1Department of Civil Engineering, SRM University AP, Mangalagiri, Andhra Pradesh, 522502, India
| | - Tanmay Basak
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Venkata Chandra Sekhar Palla
- Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun, 248005, India
| |
Collapse
|
2
|
Rajak RC, Jacob S, Kim BS. A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137067. [PMID: 32059301 DOI: 10.1016/j.scitotenv.2020.137067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 05/18/2023]
Abstract
The growing concerns over the depleting fossil fuels and increase in the release of greenhouse gas emissions have necessitated the search for the potential biomass source for alternative energy generation. In this context, third generation biomass specifically maroalgae has gained a lot of research interest in the recent years for energy and products generation such as ethanol, butanol, alginates, agars, and carrageenans. There are a few reviews available in scientific domain on macroalgal biomass utilization for bioethanol production but none of them has addressed precisely from phenolic precursor compounds to the entire ethanol production process and its bottlenecks. Here, we explained critically the processes involved in bioethanol, value added products and chemicals production utilizing macroalgal biomass as a feedstock along with its zero waste feasibility approach. Apart from this, we have also summarized the major issues linked to the macroalgae based biofuels and bioproducts generation processes and their possible corrective measures. Biorefinery is a promising way to generate multiple products from a single source with short processing time. Thus, this review also focuses on the recent advancement in the macroalgal biomass scaling up and how this could help in the growth of macroalgal biorefinery industry in the near future.
Collapse
Affiliation(s)
- Rajiv Chandra Rajak
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chunbuk 361-763, Republic of Korea
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chunbuk 361-763, Republic of Korea.
| |
Collapse
|
3
|
Luo H, Wang H, Kong L, Li S, Sun Y. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:341-348. [PMID: 31173984 DOI: 10.1016/j.jhazmat.2019.05.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
As an environmental contaminant, petroleum-contaminated soil will pollute water, stunt agricultural growth, and cause serious harms to human health if it wasn't safely disposed and remediated. Here, low-temperature microwave-assisted treatment of petroleum-contaminated soil was developed for simultaneous soil rehabilitation, oil recovery and revegetation. The results indicated the concentration of petroleum contaminant was decreased to regulatory standard after 20 min treatment at 250-300 °C. 91.6% of the oil was recovered, and it mainly consisted of C11-C30 hydrocarbons. Using the soil remediated at 250 °C for plant growth test, no adverse effect or fertility loss was observed and an optimal clover germination rate was reached. The results of microwave thermogravimetric analysis, dielectric property and EDX mapping revealed that the efficient remediation was attributed to the presence of hot spots, and the efficient heat /mass transfer during microwave heating. A three-stage petroleum removal mechanism was proposed, where the hydrocarbons were gradually removed via steam stripping, thermal desorption, and pyrolysis/carbonization as the temperature increased.
Collapse
Affiliation(s)
- Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; School of Physical Science and Technology, Shanghai-Tech University, Shanghai, 200031, PR China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, PR China; School of Physical Science and Technology, Shanghai-Tech University, Shanghai, 200031, PR China.
| |
Collapse
|
4
|
Luo H, Bao L, Wang H, Kong L, Sun Y. Microwave-assisted in-situ elimination of primary tars over biochar: Low temperature behaviours and mechanistic insights. BIORESOURCE TECHNOLOGY 2018; 267:333-340. [PMID: 30029179 DOI: 10.1016/j.biortech.2018.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
An efficient method for microwave-assisted low temperature catalytic elimination of primary tars using cheap biochar as catalyst has been developed along with H2 rich syngas production. Tar removal efficiency reached 94.03% after 8 min reaction at 600 °C, while the concentration of H2 and syngas was up to 50.5 vol% and 94.5 vol% respectively, which were significantly comparable to conventional technologies at 700-900 °C. The FT-IR, ICP and EDX results indicated that the biochar surface contained O-containing functional groups and 12.6 wt% uniformly dispersed alkali and alkaline earth metals (AAEMs) in the carbon skeleton. The low temperature behaviours were attributed to the hot spots, which were induced by the increased dielectric properties of biochar and decentralized AAEMs under microwave heating. Possible reaction mechanism for the elimination of primary tars over biochar catalysts were discussed based on this experimental study.
Collapse
Affiliation(s)
- Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liwei Bao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingzhao Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China.
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China; ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, PR China
| |
Collapse
|
5
|
Zhang Y, Chen P, Liu S, Peng P, Min M, Cheng Y, Anderson E, Zhou N, Fan L, Liu C, Chen G, Liu Y, Lei H, Li B, Ruan R. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review. BIORESOURCE TECHNOLOGY 2017; 230:143-151. [PMID: 28161187 DOI: 10.1016/j.biortech.2017.01.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research.
Collapse
Affiliation(s)
- Yaning Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology (HIT), 92 West Dazhi Street, Harbin, Heilongjiang 150001, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Shiyu Liu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Peng Peng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Min Min
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Erik Anderson
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Nan Zhou
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Liangliang Fan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA; Ministry of Education Engineering Research Center for Biomass Conversion, Nanchang University, 235 Nanjing Road, Nanchang City, Jiangxi 330047, China
| | - Chenghui Liu
- Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Guo Chen
- Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yuhuan Liu
- Ministry of Education Engineering Research Center for Biomass Conversion, Nanchang University, 235 Nanjing Road, Nanchang City, Jiangxi 330047, China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| | - Bingxi Li
- School of Energy Science and Engineering, Harbin Institute of Technology (HIT), 92 West Dazhi Street, Harbin, Heilongjiang 150001, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, 1390 Eckles Ave., St. Paul, MN 55108, USA; Ministry of Education Engineering Research Center for Biomass Conversion, Nanchang University, 235 Nanjing Road, Nanchang City, Jiangxi 330047, China.
| |
Collapse
|