1
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
2
|
20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Bauer WS, Richardson KA, Adams NM, Ricks KM, Gasperino DJ, Ghionea SJ, Rosen M, Nichols KP, Weigl BH, Haselton FR, Wright DW. Rapid concentration and elution of malarial antigen histidine-rich protein II using solid phase Zn(II) resin in a simple flow-through pipette tip format. BIOMICROFLUIDICS 2017; 11:034115. [PMID: 28652885 PMCID: PMC5457299 DOI: 10.1063/1.4984788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/18/2017] [Indexed: 05/31/2023]
Abstract
Rapid diagnostic tests (RDTs) designed to function at the point of care are becoming more prevalent in malaria diagnostics because of their low cost and simplicity. While many of these tests function effectively with high parasite density samples, their poor sensitivity can often lead to misdiagnosis when parasitemia falls below 100 parasites/μl. In this study, a flow-through pipette-based column was explored as a cost-effective means to capture and elute more Plasmodium falciparum histidine-rich protein II (HRPII) antigen, concentrating the biomarker available in large-volume lysed whole blood samples into volumes compatible with Plasmodium falciparum-specific RDTs. A systematic investigation of immobilized metal affinity chromatography divalent metal species and solid phase supports established the optimal design parameters necessary to create a flow-through column incorporated into a standard pipette tip. The bidirectional flow inherent to this format maximizes mixing efficiency so that in less than 5 min of sample processing, the test band signal intensity was increased up to a factor of twelve from HRPII concentrations as low as 25 pM. In addition, the limit of detection per sample was decreased by a factor of five when compared to the RDT manufacturer's suggested protocol. Both the development process and commercial viability of this application are explored, serving as a potential model for future applications.
Collapse
Affiliation(s)
- Westley S Bauer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kelly A Richardson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Keersten M Ricks
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - David J Gasperino
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, Washington 98007, USA
| | - Simon J Ghionea
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, Washington 98007, USA
| | - Mathew Rosen
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, Washington 98007, USA
| | - Kevin P Nichols
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, Washington 98007, USA
| | - Bernhard H Weigl
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, Washington 98007, USA
| | | | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
4
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques- Developments from 2014 to 2016. Electrophoresis 2016; 38:95-114. [DOI: 10.1002/elps.201600280] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences; Brno Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel Switzerland
| |
Collapse
|