1
|
Yang X, Xie X, Jiang L, Fan Y, Zhang C, Wang Y. Cu-NC single-atom nanozymes with peroxidase-like activity for colorimetric detection of d-penicillamine. Talanta 2025; 283:127131. [PMID: 39504865 DOI: 10.1016/j.talanta.2024.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Most conventional nanozymes have poor specificity and low activity, and designing high-performance nanozymes remains a challenge. In contrast, single-atom nanozymes have high atom utilization and high reactivity. Here, we prepared Cu single-atom nanozymes (Cu-NC) with excellent peroxidase-like activity by high-temperature pyrolysis using Cu as a transition metal source. The introduction of Cu formed the Cu-Nx active site, which accelerated charge transfer between the reactants and the active site and was the key for improving the activity. With Cu-NC as a catalyst, H2O2 rapidly oxidized 3,3',5,5'-tetramethylbenzidine (TMB) to oxTMB, and the solution turned blue with strong absorption at 652 nm. Because d-penicillamine (D-PA) can reduce oxTMB or react with reactive oxygen species radicals to inhibit the color reaction, we built a colorimetric sensing platform around Cu-NC for the determination of D-PA and successfully used it for the determination of D-PA in urine samples. This work provides new ideas for the design of high-performance nanozymes and the detection of D-PA in real environments.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| | - Xiaoyi Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Ling Jiang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Yuxiu Fan
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Chenglin Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
2
|
Akgönüllü S, Denizli A. Plasmonic nanosensors for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2023; 236:115671. [PMID: 37659267 DOI: 10.1016/j.jpba.2023.115671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
The detection and identification of clinical biomarkers with related sensitivity have become a source of considerable concern for biomedical analysis. There have been increasing efforts toward the development of single-molecule analytical platforms to overcome this concern. The latest developments in plasmonic nanomaterials include fascinating advances in energy, catalyst chemistry, optics, biotechnology, and medicine. Nanomaterials can be successfully applied to biomolecule and drug detection in plasmonic nanosensors for pharmaceutical and biomedical analysis. Plasmonic-based sensing technology exhibits high sensitivity and selectivity depending on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) phenomena. In this critical paper, we offer an overview of the methodology of the SPR, LSPR, surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), and plasmonic nanoplatforms advanced for pharmaceutical and biomedical applications. First of all, we present here a brief discussion of the above trends. We have devoted the last section to the explanation of SPR, LSPR, SERS, SEIRA, and SEF platforms, which have found a wide range of applications, and reviewed recent advances for biomedical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
3
|
Ryan J, Jacob P, Lee A, Gagnon Z, Pavel IE. Biodistribution and toxicity of antimicrobial ionic silver (Ag +) and silver nanoparticle (AgNP +) species after oral exposure, in Sprague-Dawley rats. Food Chem Toxicol 2022; 166:113228. [PMID: 35710031 DOI: 10.1016/j.fct.2022.113228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 01/22/2023]
Abstract
Although antimicrobial nanosilver finds numerous applications in the health and food industries, the in vivo toxicity of positively charged silver nanoparticles (AgNPs+) and relevant controls are largely unexplored. This study investigates the relationship between the biodistribution and toxicity of the well-known cetyltrimethylammonium bromide (CTAB)-capped AgNPs+ in 6-weeks old female Sprague-Dawley rats, at sublethal doses. Amounts comparative to those leaked from food products or considered for animal feed were administered through daily water intake, for an 18-day period: AgNPs+ (40 μg mL-1), Ag+ (40 μg mL-1), antimicrobial CTAB+ (24 μg mL-1) and tap water. All exposures except for the water control had adverse effects on the health and systemic functions of rats (e.g., lethargy, hepatomegaly, splenomegaly, impediment of bone development, and/or heightened immune response). Although the total Ag accumulation in tissues (1.4-1.6 μg of Ag/g of liver, spleen, jejunum, and brain) was comparable for the two Ag species, AgNPs+ were generally more toxic than Ag+, particularly in spleen (0.8 μg Ag/g). Significantly reduced euthanasia time, alopecia, inflammatory responses in spleen, fragile veins, and enhanced lymphocytosis were observed only for AgNPs+. Overall, this study raises health concerns about the ingestion of capped-AgNPs+ or Ag+ by first-hand consumers and industry workers.
Collapse
Affiliation(s)
- John Ryan
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Hwy, Fairborn, OH, 45435, USA
| | - Paige Jacob
- Cornell University, Department of Civil and Environmental Engineering, 527 College Ave, Ithaca, NY, 14853, USA
| | - Alec Lee
- Marist College, Department of Environmental Science, 3399 North Rd, Poughkeepsie, NY, 12601, USA
| | - Zofia Gagnon
- Marist College, Department of Environmental Science, 3399 North Rd, Poughkeepsie, NY, 12601, USA.
| | - Ioana E Pavel
- Texas A&M University at Corpus Christi, Department of Physical and Environmental Sciences, 6300 Ocean Drive, Corpus Christi, TX, 78412-5800, USA.
| |
Collapse
|
4
|
Racles C, Asandulesa M, Tiron V, Tugui C, Vornicu N, Ciubotaru BI, Mičušík M, Omastová M, Vasiliu AL, Ciomaga C. Elastic composites with PDMS matrix and polysulfone-supported silver nanoparticles as filler. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia MDL. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron 2020; 169:112599. [DOI: 10.1016/j.bios.2020.112599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
6
|
Wang Q, Li L, Wu T, Kong X, Ma Q, Ma C. A graphene quantum dots-Pb 2+ based fluorescent switch for selective and sensitive determination of D-penicillamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117924. [PMID: 31839577 DOI: 10.1016/j.saa.2019.117924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Taking consideration of metal-induced fluorescence quenching and excellent coordination effect of D-penicillamine (D-PA), a graphene quantum dots (GQDs)-based fluorescent switch for D-PA detection was designed and established firstly with the help of lead ions. GQDs obtained from citric acids made them rich in carboxyl and hydroxyl groups, giving GQDs the ability to combine with lead ions. As anticipated, the fluorescence intensity was quenched by Pb2+ through electron transfer process. Further, the addition of D-PA effectively recovered the fluorescence due to the departure of Pb2+ from GQDs aroused by the strong coordination between D-PA and Pb2+. Thus, a fluorescent switch was activated for D-PA detection. The fluorescence recovery efficiencies were found to be proportional to the concentration of D-PA in the range of 0.6-50 μmol L-1 and the detection limit was 0.47 μmol L-1. The real sample detection was performed in human urea sample and satisfactory recoveries of 96.84%-102.13% were obtained. The GQDs-Pb2+ based fluorescent switch sensing method was firstly established with low detection limit and wide linear range, making it a supplement and improvement for D-PA detection.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China.
| | - Lingfang Li
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Tingxuan Wu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Xiangpeng Kong
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Qingguo Ma
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China
| | - Chunlei Ma
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China.
| |
Collapse
|
7
|
Copper nanocluster‐based fluorescence enhanced determination of
d
‐penicillamine. LUMINESCENCE 2019; 34:767-773. [DOI: 10.1002/bio.3672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
|
8
|
Pal A, Yadav S. Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behavior of surface active ionic liquid 1-tetradecyl-3-methylimidazolium bromide and structurally similar conventional surfactant tetradecyltrimethylammonium bromide in aqueous media. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1472006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amalendu Pal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sangeeta Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
9
|
Sensitive and Selective Detection of Antibiotic D-Penicillamine Based on a Dual-Mode Probe of Fluorescent Carbon Dots and Gold Nanoparticles. J Fluoresc 2018; 28:1405-1412. [DOI: 10.1007/s10895-018-2307-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
10
|
Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Anal Bioanal Chem 2018; 410:2629-2636. [DOI: 10.1007/s00216-018-0936-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
|
11
|
Functionalized fluorescent nanomaterials for sensing pollutants in the environment: A critical review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behaviour of imidazolium based surface active ionic liquid in aqueous solution. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydr Polym 2017; 156:253-258. [DOI: 10.1016/j.carbpol.2016.08.099] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022]
|
14
|
Chadha C, Singh G, Singh G, Kumar H, Kang TS. Modulating the mixed micellization of CTAB and an ionic liquid 1-hexadecyl-3-methylimidazollium bromide via varying physical states of ionic liquid. RSC Adv 2016. [DOI: 10.1039/c6ra05330k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physical nature of [C16mim][Br] as monomers/micelles led to different IL–CTAB mixed self-assembled structures.
Collapse
Affiliation(s)
- Chanda Chadha
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology
- Jalandhar
- India
| | - Gurbir Singh
- Department of Chemistry
- UGC-centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Gurpreet Singh
- Department of Chemistry
- UGC-centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| | - Harsh Kumar
- Department of Chemistry
- Dr B. R. Ambedkar National Institute of Technology
- Jalandhar
- India
| | - Tejwant Singh Kang
- Department of Chemistry
- UGC-centre for Advance Studies – II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|