1
|
Wang X, Zhao Q, Song Q, Bu H, Gao J, Li L, Yu X, Yang X, Lu Z, Zhang X. Chemical synthesis of carbon dots with blue, green and red emission for dopamine reversible switching probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123952. [PMID: 38295594 DOI: 10.1016/j.saa.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Carbon dots (CDs) possess the merits such as energy efficiency, green sustainability and environmental friendliness, comparing with top-down synthesis methods at higher pressure or temperature condition. Here, a variety of emission states CDs were prepared by using the method of room temperature chemistry by selecting green raw materials such as glucose, p-phthalaldehyde and m-diethylaminophenol. The luminescence mechanism was studied in detail. The luminescent center of blue emitting carbon dots (B-CDs) and green emitting carbon dots (G-CDs) is CO bond, and the increased contents of CO bond lead to the creation of new energy levels between the energy gaps of HOMO and LUMO levels, which results in the red shift of luminescence wavelength. The emission state of red emitting carbon dots (R-CDs) is due to the formation of amino N. In addition, R-CDs have an exclusive respond to dopamine (DA) and are regarded as good fluorescent probes for detecting DA. Furthermore, the addition of ascorbic acid (AA) restores the luminescence of R-CDs quenched by DA. Therefore, R-CDs has great application potential as a selective fluorescent "turn on-off" probe.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingling Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qinghong Song
- Tian Jin Medical Union Center, Tianjin 300122, China
| | - He Bu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jie Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
2
|
Yan Z, Peng Z, Lai J, Xu P, Qiu P. Simplifying the complexity: Single enzyme (choline oxidase) inhibition-based biosensor with dual-readout method for organophosphorus pesticide detection. Talanta 2023; 265:124905. [PMID: 37421789 DOI: 10.1016/j.talanta.2023.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, but their residues could cause pollution to the environment and living organisms. In this paper, a simple dual-readout method for OPs detection was proposed based on ChOx single enzyme inhibition. Firstly, ChOx can catalyze the production of H2O2 from choline chloride (Ch-Cl). Bifunctional iron-doped carbon dots (Fe-CDs) with good peroxidase-like activity and superior fluorescence properties can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) by H2O2 formed, and oxTMB could quench the fluorescence of Fe-CDs. In light of the fact that OPs exhibited activity in inhibiting ChOx, less H2O2 and the decreasing oxTMB led to a result that the fluorescence of the system recovered and the solution became lighter in blue color. Moreover, the process of ChOx inhibition by OPs was analyzed by molecular docking technique and it was found that OPs interact with key amino acid residues catalyzed by ChOx (Asn510, His466, Ser101, His351, Phe357, Trp331, Glu312). Finally, a dual-mode (colorimetry and fluorescence) sensor was created for the detection of OPs with the detection limit of 6 ng/L, and was successfully used in the quantitative determination of OPs in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Ziyu Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Juanhua Lai
- Jiangxi Center of Medical Device Testing, Nanchang, 330047, China
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Hemmati A, Emadi H, Nabavi SR. Green Synthesis of Sulfur- and Nitrogen-Doped Carbon Quantum Dots for Determination of L-DOPA Using Fluorescence Spectroscopy and a Smartphone-Based Fluorimeter. ACS OMEGA 2023; 8:20987-20999. [PMID: 37332813 PMCID: PMC10269249 DOI: 10.1021/acsomega.3c01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Sulfur- and nitrogen-doped carbon quantum dots (S,N-CQDs) were synthesized using feijoa leaves as a green precursor via a novel route. Spectroscopic and microscopic methods such as X-ray photoelectron spectroscopy, fluorescence spectroscopy, and high-resolution transmission electron microscopy were used to analyze the synthesized materials. The blue emissive S,N-CQDs were applied for qualitative and quantitative determination of levodopa (L-DOPA) in aqueous environmental and real samples. Human blood serum and urine were used as real samples with good recovery of 98.4-104.6 and 97.3-104.3%, respectively. A smartphone-based fluorimeter device was employed as a novel and user-friendly self-product device for pictorial determination of L-DOPA. Bacterial cellulose nanopaper (BC) was used as a substrate for S,N-CQDs to make an optical nanopaper-based sensor for L-DOPA determination. The S,N-CQDs demonstrated good selectivity and sensitivity. The interaction of L-DOPA with the functional groups of the S,N-CQDs via the photo-induced electron transfer (PET) mechanism quenched the fluorescence of S,N-CQDs. The PET process was studied using fluorescence lifetime decay, which confirmed the dynamic quenching of S,N-CQD fluorescence. The limit of detection (LOD) of S,N-CQDs in aqueous solution and the nanopaper-based sensor was 0.45 μM in the concentration range of 1-50 μM and 31.05 μM in the concentration range of 1-250 μM, respectively.
Collapse
|
4
|
Arpita, Kumar P, Kataria N, Narwal N, Kumar S, Kumar R, Khoo KS, Show PL. Plastic Waste-Derived Carbon Dots: Insights of Recycling Valuable Materials Towards Environmental Sustainability. CURRENT POLLUTION REPORTS 2023; 9:1-21. [PMID: 37362608 PMCID: PMC10214366 DOI: 10.1007/s40726-023-00268-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Carbon dots (CDs) or carbon quantum dots (CQDs) have emerged as rising stars in the carbon family due to their diverse applications in various fields. CDs are spherical particles with a well-distributed size of less than 10 nm. Functional CDs are promising nanomaterials with low toxicity, low cost, and enormous applications in the field of bioimaging, optoelectronics, photocatalysis, and sensing. Plastic is non-biodegradable and hazardous to the environment, however extremely durable and used in abundance. During the COVID-19 pandemic, the use of plastic waste, particularly masks, goggles, face shields, and shoe cover, has increased tremendously. It needs to be recycled in a productive way as plastic wastes take hundreds or thousands of years to degrade naturally. The conversion of plastic waste into magnificent CDs has been reported as one of the key alternatives for environmental sustainability and socio-economic benefits. In this review, synthetic routes for the conversion of plastic wastes into CDs utilizing hydrothermal, solvothermal, pyrolysis, flash joule heating, and characterization of these CDs using different techniques, such as Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and transmission electron microscope, have been discussed. Furthermore, potential applications of these plastic-derived CDs in sensing, catalysis, agronomics, and LED lights are summarized herein.
Collapse
Affiliation(s)
- Arpita
- Faculty of Sciences, J. C. Bose University of Science & Technology, YMCA, Haryana 121006 Faridabad, India
| | - Parmod Kumar
- Faculty of Sciences, J. C. Bose University of Science & Technology, YMCA, Haryana 121006 Faridabad, India
| | - Navish Kataria
- Faculty of Sciences, J. C. Bose University of Science & Technology, YMCA, Haryana 121006 Faridabad, India
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078 India
| | - Sandeep Kumar
- Faculty of Sciences, J. C. Bose University of Science & Technology, YMCA, Haryana 121006 Faridabad, India
| | - Ravi Kumar
- Faculty of Sciences, J. C. Bose University of Science & Technology, YMCA, Haryana 121006 Faridabad, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Sakunrungrit K, Suwanchawalit C, Charoenkitamorn K, Hongwitayakorn A, Strzelak K, Chaneam S. Sequential Injection Analysis for Rapid Determination of Mercury in Skincare Products Based on Fluorescence Quenching of Eco-Friendly Synthesized Carbon Dots. ACS OMEGA 2023; 8:7615-7625. [PMID: 36872964 PMCID: PMC9979229 DOI: 10.1021/acsomega.2c07175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work reports the analysis of mercury using a spectrofluorometric method combined with a sequential injection analysis (SIA) system. This method is based on the measurement of fluorescence intensity of carbon dots (CDs), which is quenched proportionally after adding mercury ions. Herein, the CDs underwent environmentally friendly synthesis using a microwave-assisted approach that provides intensive and efficient energy and shortens reaction time. After irradiation at 750 W for 5 min in a microwave oven, a dark brown CD solution with a concentration of 2.7 mg mL-1 was obtained. The properties of the CDs were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and UV-vis spectrometry. We presented for the first time the use of CDs as a specific reagent for the determination of mercury in skincare products with the SIA system to achieve rapid analysis and full automatic control. The as-prepared CD stock solution was diluted 10 times and used as a reagent in the SIA system. Excitation and emission wavelengths at 360 and 452 nm, respectively, were used to construct a calibration curve. Physical parameters affecting the SIA performance were optimized. In addition, the effect of pH and other ions was investigated. Under the optimum conditions, our method showed a linear range from 0.3 to 600 mg L-1 with an R 2 of 0.99. The limit of detection was 0.1 mg L-1. Relative standard deviation was 1.53% (n = 12) with a high sample throughput of 20 samples per hour. Finally, the accuracy of our method was validated by comparison using inductively coupled plasma mass spectrometry. Acceptable recoveries were also presented without a significant matrix effect. This method was also the first time that uses the untreated CDs for the determination of mercury(II) in skincare products. Therefore, this method could be an alternative for mercuric toxic control in other sample applications.
Collapse
Affiliation(s)
- Kanokwan Sakunrungrit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Cheewita Suwanchawalit
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kanokwan Charoenkitamorn
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Apisake Hongwitayakorn
- Department
of Computing, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
| | - Kamil Strzelak
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Sumonmarn Chaneam
- Department
of Chemistry, Faculty of Science, Silpakorn
University, Nakhon
Pathom 73000, Thailand
- Flow
Innovation Research for Science and Technology Laboratories (FIRST
Labs), Bangkok 10400, Thailand
| |
Collapse
|
6
|
Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Sci Rep 2022; 12:22495. [PMID: 36577768 PMCID: PMC9797560 DOI: 10.1038/s41598-022-26906-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Carbon quantum dots (CQDs) were synthesized in this study by hydrothermally treating cow milk. The procedure is simple, non-hazardous to the environment, and does not necessitate the use of any special instruments or chemicals. CQDs were practically almost circular when they were manufactured and had an average size of 7 nm. Carbon (67.36%), oxygen (22.73%), and nitrogen (9.91%) comprised the majority of their composition. They feature broad excitation-emission spectra, excitation-dependent emission, and temperature-dependent photoluminescence. They remained quite stable in the presence of a lot of salt, UV radiation, and storage time. Because luminescence quenching mechanisms are sensitive to and selective for Sn2+, they can be employed to create a nanosensor for detecting Sn2+.
Collapse
|
7
|
Sawalha S, Assali M, Raddad M, Ghneem T, Sawalhi T, Almasri M, Zarour A, Misia G, Prato M, Silvestri A. Broad-Spectrum Antibacterial Activity of Synthesized Carbon Nanodots from d-Glucose. ACS APPLIED BIO MATERIALS 2022; 5:4860-4872. [PMID: 36100469 DOI: 10.1021/acsabm.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanodots, a class of carbon nano-allotropes, have been synthesized through different routes and methods from a wide range of precursors. The selected precursor, synthetic method, and conditions can strongly alter the physicochemical properties of the resulting material and their intended applications. Herein, carbon nanodots (CNDs) have been synthesized from d-glucose by combining pyrolysis and chemical oxidation methods. The effect of the pyrolysis temperature, equivalents of oxidizing agent, and refluxing time were studied on the product and quantum yield. In the optimum conditions (pyrolysis temperature of 300 °C, 4.41 equiv of H2O2, 90 min of reflux) CNDs were obtained with 40% and 3.6% of product and quantum yields, respectively. The obtained CNDs are negatively charged (ζ-potential = -32 mV), excellently dispersed in water, with average diameter of 2.2 nm. Furthermore, ammonium hydroxide (NH4OH) was introduced as dehydrating and/or passivation agent during CNDs synthesis resulting in significant improvement of both product and quantum yields of about 1.5 and 3.76-fold, respectively. The synthesized CNDs showed a broad spectrum of antibacterial activities toward different Gram-positive and Gram-negative bacteria strains. Both synthesized CNDs caused highly colony forming unit reduction (CFU), ranging from 98% to 99.99% for most of the tested bacterial strains. However, CNDs synthesized in the absence of NH4OH, due to a negatively charged surface enriched in oxygenated groups, performed better in zone inhibition and minimum inhibitory concentration. The elevated antibacterial activity of high-oxygen-containing carbon nanodots is directly correlated to their ROS formation ability.
Collapse
Affiliation(s)
- Shadi Sawalha
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Muna Raddad
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Tasneem Ghneem
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Tasneem Sawalhi
- Department of Chemical Engineering, An-Najah National University, Nablus, P400, Palestine
| | - Motasem Almasri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P400, Palestine
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences, Universitá degli Studi di Trieste, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, Universitá degli Studi di Trieste, Trieste, 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20014, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20014, Spain
| |
Collapse
|
8
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
9
|
Perikala M, Bhardwaj A. Waste to white light: a sustainable method for converting biohazardous waste to broadband white LEDs. RSC Adv 2022; 12:11443-11453. [PMID: 35425042 PMCID: PMC9006348 DOI: 10.1039/d2ra01146h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
The Covid-19 pandemic has generated a lot of non-degradable biohazardous plastic waste across the globe in the form of disposable surgical and N95 masks, gloves, face shields, syringes, bottles and plastic storage containers. In the present work we address this problem by recycling plastic waste to single system white light emitting carbon dots (CDs) using a pyrolytic method. The synthesized CDs have been embedded into a transparent polymer to form a carbon dot phosphor. This CD phosphor has a broad emission bandwidth of 205 nm and is stable against photo degradation for about a year. A white LED with CRI ∼70 and CIE co-ordinates of (0.25, 0.32) using the fabricated CD phosphor is reported. Further our phosphor is scalable and is environmentally sustainable, and will find wide application in next generation artificial lighting systems.
Collapse
Affiliation(s)
- Manasa Perikala
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore 560012 India
| | - Asha Bhardwaj
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
10
|
Calabrese G, De Luca G, Nocito G, Rizzo MG, Lombardo SP, Chisari G, Forte S, Sciuto EL, Conoci S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int J Mol Sci 2021; 22:11783. [PMID: 34769212 PMCID: PMC8583729 DOI: 10.3390/ijms222111783] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giuseppe Nocito
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Maria Giovanna Rizzo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Stefano Forte
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
| | - Emanuele Luigi Sciuto
- A.O.-Universitaria Policlinico “G. Rodolico–San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| |
Collapse
|
11
|
One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochim Acta 2021; 188:330. [PMID: 34498123 DOI: 10.1007/s00604-021-04973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Tunable multicolor carbon dots (CDs) with a quantum yield reach up to 35% were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. Transmission electron microscopy images reveal that the as-prepared CDs possess a small size distribution below 10 nm with bright blue, green, and yellow color emission, designated as b-CDs, g-CDs, and y-CDs, respectively. The in-depth investigations reveal that the multicolor emission CDs with different fraction displays fluorescence emission wavelength ranges from 398 nm (b-CDs), 525 nm (g-CDs), to 553 nm (y-CDs) which could be well modulated by controlling the amount of heteroatom nitrogen especially amino nitrogen onto their surface structures. Further experiments verify the important role of nitrogen content by using rhodamine solely or substituting urea with sulfur containing compounds as precursors to produce corresponding CDs since the performance is lower than that of urea incorporation. Theoretical calculation results also reveal that the increasing amount of amino nitrogen into their surface structures of b-CDs, g-CDs to y-CDs is responsible for reduced band gaps energy, which result in the redshifted wavelength. Benefiting from the excellent photoluminescence properties, wide pH variation range, high photo stability, and low toxicity, these CDs were employed for HClO sensing at 553 nm within the range 5 to 140 μM with a limit of detection (LOD) of 0.27 ± 0.025 μM (n = 3) and multicolor cellular imaging in HeLa cells. Tunable multicolor carbon dots (CDs) were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. The as-prepared CDs exhibit bright blue, green, and yellow color emission which could be well modulated by controlling the increasing incorporation of heteroatom nitrogen especially amino nitrogen into their surface structures. These CDs were employed for HClO sensing and demonstrated to multicolor cellular imaging in HeLa cells.
Collapse
|
12
|
Li Z, Ni J, Liu L, Gu L, Wu Z, Li T, Ivanovich KI, Zhao W, Sun T, Wang T. Imaging-Guided Chemo-Photothermal Polydopamine Carbon Dots for EpCAM-Targeted Delivery toward Liver Tumor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29340-29348. [PMID: 34137582 DOI: 10.1021/acsami.1c05079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate a versatile nanoparticle with imaging-guided chemo-photothermal synergistic therapy and EpCAM-targeted delivery of liver tumor cells. EpCAM antibody (anti-EpCAM) and Pt(IV) were grafted onto the polydopamine carbon dots (PDA-CDs) by the amidation reaction. The EpCAM antibody of particles enables the targeted interaction with liver progenitor cells due to their overexpressed EpCAM protein. The tetravalent platinum prodrug [Pt(IV)] induces apoptosis with minimum toxic side effects through the interaction between cisplatin and tumor cell DNA. The nanoparticles displayed stable photothermal property and considerable anti-tumor therapeutic effect in vivo. Coupling with cellular imaging due to their fluorescence property, anti-EpCAM@PDA-CDs@Pt(IV) offers a convenient and effective platform for imaging-guided chemo-photothermal synergistic therapy toward liver cancers in the near future.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Liping Liu
- Harbin First Specialist Hospital, 217 Hongwei Road, Harbin 150056, China
| | - Liyuan Gu
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Zhiguang Wu
- Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | - Tianlong Li
- Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | | | - Wancheng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ting Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
13
|
Chen YY, Jiang WP, Chen HL, Huang HC, Huang GJ, Chiang HM, Chang CC, Huang CL, Juang TY. Cytotoxicity and cell imaging of six types of carbon nanodots prepared through carbonization and hydrothermal processing of natural plant materials. RSC Adv 2021; 11:16661-16674. [PMID: 35479143 PMCID: PMC9031421 DOI: 10.1039/d1ra01318a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
In this study we prepared six types of carbon nanodots (CNDs) from natural plant materials – through carbonization of two species of bamboo (Bamboo-I, Bamboo-II) and one type of wood (Wood), and through hydrothermal processing of the stem and root of the herb Mahonia oiwakensis Hayata (MO) and of the agricultural waste of two species of pineapple root (PA, PB). The resulting CNDs were spherical with dimensions on the nanoscale (3–7 nm); furthermore, CND-Bamboo I, CND-Wood, CND-Bamboo II, CND-MO, CND-PA, and CND-PB displayed fluorescence quantum yields of 9.63, 12.34, 0.90, 10.86, 0.35, and 0.71%, respectively. X-ray diffraction revealed that the carbon nanostructures possessed somewhat ordered and disordered lattices, as evidenced by broad signals at values of 2θ between 20 and 30°. CND-Bamboo I, CND-Wood, and CND-Bamboo II were obtained in yields of 2–3%; CND-MO, CND-PA, and CND-PB were obtained in yields of 17.64, 9.36, and 22.47%, respectively. Cytotoxicity assays for mouse macrophage RAW264.7 cells treated with the six types of CNDs and a commercial sample of Ag nanoparticles (NPs) revealed that each of our CNDs provided a cell viability of 90% at 2000 μg mL−1, whereas it was only 20% after treatment with the Ag NPs at 62.5 μg mL−1. The six types of CNDs also displayed low cytotoxicity toward human keratinocyte HacaT cells, human MCF-7 breast cancer cells, and HT-29 colon adenocarcinoma cells when treated at 500 μg mL−1. Moreover, confocal microscopic cell imaging revealed that the fluorescent CND-Bamboo I particles were located on the MCF-7 cell membrane and inside the cells after treatment for 6 and 24 h, respectively. We have thoroughly investigated the photoluminescence properties and carbon nanostructures of these highly dispersed CNDs. Because of the facile green synthesis of these six types of CNDs and their sourcing from abundant natural plants, herbs, and agriculture waste, these materials provide a cost-effective method, with low cytotoxicity and stable fluorescence, for biolabeling and for developing cell nanocarriers. Green nanotechnology of six types of carbon nanodots (CNDs), and their sourcing from abundant natural plants, herbs, and agriculture waste, provides a cost-effective method, with low cytotoxicity and stable fluorescence, for biolabeling and for developing cell nanocarriers.![]()
Collapse
Affiliation(s)
- Yu-Yu Chen
- Department of Cosmeceutics, China Medical University Taichung Taiwan
| | - Wen-Ping Jiang
- Department of Occupational Therapy, Asia University Taichung Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science Tainan Taiwan
| | - Huan-Luen Chen
- Department of Cosmeceutics, China Medical University Taichung Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University Taichung Taiwan.,Master Program for Food and Drug Safety, China Medical University Taichung Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University Taichung Taiwan
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University Taichung Taiwan
| | - Chang-Cheng Chang
- Aesthetic Medical Center, China Medical University Hospital Taichung Taiwan.,School of Medicine, China Medical University Taichung Taiwan
| | - Cheng-Liang Huang
- Department of Applied Chemistry, National Chiayi University Chiayi Taiwan
| | - Tzong-Yuan Juang
- Department of Cosmeceutics, China Medical University Taichung Taiwan
| |
Collapse
|
14
|
Synthesis of surface molecularly imprinted poly-o-phenylenediamine/TiO2/carbon nanodots with a highly enhanced selective photocatalytic degradation of pendimethalin herbicide under visible light. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104580] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Tian XT, Yin XB. Carbon Dots, Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901803. [PMID: 31240816 DOI: 10.1002/smll.201901803] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Indexed: 05/24/2023]
Abstract
Carbon dots (C-dots) are generally separated into graphene quantum dots (GQDs) and carbon nanodots (CNDs) based on their respective top-down and bottom-up preparation processes. However, GQDs can be prepared by carbonization of small-molecule precursors as revealed with unconventional preparation strategies. Thus, it is their structures rather than their precursors and preparation strategy that govern whether C-dots are GQDs or CNDs. Here, the composites, structure, and electronic properties of C-dots are discussed. C-dots generally consist of a graphite-like core and amorphous oxygen-containing shell. When graphite becomes C-dots, its conduction and valence bands are separated, and the quantum confinement effect appears. Combined with the light-harvesting ability inherited from graphite, electrons in the core of C-dots are transferred from conduction to valence bands, leading to electron-hole pair formation upon light excitation. The photoexcitation activities, such as photovoltaic conversion, photocatalysis, and photodynamic therapy, are influenced by the electronic properties of the core. Different to the semiconductor properties of core, the C-dot shell is electrochemically active, leading to electrochemiluminescence (ECL). The oxygen-containing groups in shell can conjugate to functional species for use in imaging and therapy. The applications of C-dots beyond photoluminescence, including ECL, solar photovoltaics, photocatalysis, and theranostics, are reviewed.
Collapse
Affiliation(s)
- Xue-Tao Tian
- State Key Laboratory of Medicinal Chemical, Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical, Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Sharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnology 2019; 17:92. [PMID: 31451110 PMCID: PMC6709552 DOI: 10.1186/s12951-019-0525-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Carbon dots (CDs) are the new fellow of carbon family having a size less than 10 nm and attracted much attention of researchers since the last decade because of their unique characteristics, such as inexpensive and facile synthesis methods, easy surface modification, excellent photoluminescence, outstanding water solubility, and low toxicity. Due to these unique characteristics, CDs have been extensively applied in different kind of scientific disciplines. For example in the photocatalytic reactions, drug-gene delivery system, in vitro and in vivo bioimaging, chemical and biological sensing as well as photodynamic and photothermal therapies. Mainly two types of methods are available in the literature to synthesize CDs: the top-down approach, which refers to breaking down a more massive carbon structure into nanoscale particles; the bottom-up approach, which refers to the synthesis of CDs from smaller carbon units (small organic molecules). Many review articles are available in the literature regarding the synthesis and applications of CDs. However, there is no such review article describing the synthesis and complete application of CDs derived from small organic molecules together. In this review, we have summarized the progress of research on CDs regarding its synthesis from small organic molecules (bottom-up approach) via hydrothermal/solvothermal treatment, microwave irradiation, ultrasonic treatment, and thermal decomposition techniques as well as applications in the field of bioimaging, drug/gene delivery system, fluorescence-based sensing, photocatalytic reactions, photo-dynamic therapy (PDT) and photo-thermal (PTT) therapy based on the available literature. Finally, the challenges and future direction of CDs are discussed.
Collapse
Affiliation(s)
- Anirudh Sharma
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Solan, HP, 173229, India
| | - Joydeep Das
- School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Solan, HP, 173229, India.
| |
Collapse
|
17
|
Yahyazadeh E, Shemirani F. Easily synthesized carbon dots for determination of mercury(II) in water samples. Heliyon 2019; 5:e01596. [PMID: 31193159 PMCID: PMC6520557 DOI: 10.1016/j.heliyon.2019.e01596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
In this work, a simple thermal method was used to synthesize carbon dots from citric acid and glycine precursors. It was found that Hg(II) ions can selectively quench the fluorescence emission of these carbon dots. Subsequently, a sensor was designed and optimized for the determination of Hg(II) ions. The limit of detection and quantification of the sensor were found to be 38 and 112 ppb, respectively. The sensor showed good selectivity toward Hg(II) ions and was successfully used for the determination of Hg(II) ions in mineral water samples.
Collapse
Affiliation(s)
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Carbon nanodots (CNDs) is the newest member of carbon-based nanomaterials and one of the most promising for the development of new, advanced applications. Owing to their unique and unparalleled physicochemical and photoluminescent properties, they are considered to be a rising star among nanomaterials. During the last decade, many applications have been developed based on CNDs. Among others, they have been used as bioimaging agents to label cells and tissues. In this review, we will discuss the advancements in the applications of CNDs in in the field of imaging, in all types of organisms (i.e., prokaryotes, eukaryotes, and animals). Selective imaging of one type of cells over another, imaging of (bio)molecules inside cells and tumor-targeting imaging are some of the studies that will be discussed hereafter. We hope that this review will assist researchers with obtaining a holistic view of the developed applications and hit on new ideas so that more advanced applications can be developed in the near future.
Collapse
|
19
|
Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging. Anal Bioanal Chem 2019; 411:967-972. [PMID: 30604036 DOI: 10.1007/s00216-018-1500-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Carbon dots (Cdots) with bright green fluorescence were applied to the rapid and selective cell imaging for a variety of cell lines. Different labeling distributions of hepatoma cells (HepG2) and normal human liver cells (LO2) were achieved using Cdots as imaging agents. For HepG2 cells, the Cdots could rapidly permeate the cell membrane and diffuse into the cytoplasm and nucleus within 3 min, and retained their location in the targets for 24 h. However, the Cdots exhibited bright fluorescence only in the cytoplasm of LO2 cell lines. Moreover, the Cdots were almost non-cytotoxic and exhibited superior photostability over a wide range of pH. Therefore, these Cdots have great potential for rapid, luminous and selective bioimaging applications, and are expected to be used as a nucleus-staining agent in cancer diagnosis. Graphical abstract ᅟ.
Collapse
|
20
|
Liu F, Jiang Y, Fan C, Zhang L, Hua Y, Zhang C, Song N, Kong Y, Wang H. Fluorimetric and colorimetric analysis of total iron ions in blood or tap water using nitrogen-doped carbon dots with tunable fluorescence. NEW J CHEM 2018. [DOI: 10.1039/c8nj00711j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped Cdots were fabricated with tunable blue-green fluorescence and changing of color for fluorimetric and colorimetric assays for total iron.
Collapse
Affiliation(s)
- Fengjuan Liu
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Yao Jiang
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Chuan Fan
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Liyan Zhang
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Yue Hua
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Chunxian Zhang
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Ning Song
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Yingjie Kong
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- P. R. China
| |
Collapse
|
21
|
Jaleel JA, Pramod K. Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 2017; 269:302-321. [PMID: 29170139 DOI: 10.1016/j.jconrel.2017.11.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
22
|
|
23
|
Ye HL, Cai SJ, Li S, He XW, Li WY, Li YH, Zhang YK. One-Pot Microwave Synthesis of Water-Dispersible, High Fluorescence Silicon Nanoparticles and Their Imaging Applications in Vitro and in Vivo. Anal Chem 2016; 88:11631-11638. [PMID: 27797177 DOI: 10.1021/acs.analchem.6b03209] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silicon nanoparticles (SiNPs) have been reported to be synthesized by microwave-assisted methods under high pressure. However, there is still a lack of knowledge about the synthesis of SiNPs via microwave-assisted methods under normal pressure. Here we developed a new, facile, one-pot microwave-assisted method for the synthesis SiNPs (∼4.2 nm) with excellent water solubility under normal pressure by employing glycerol as the solvent. Furthermore, glycerol might be responsible for the photoluminescence quantum yield (PLQY) value up to 47% for the resultant SiNPs. The use of organic solvent could afford less nanoparticle surface defects compared with those prepared in aqueous solution, thus improving the fluorescent efficiency. The as-prepared SiNPs simultaneously featured bright blue-green fluorescence, long lifetime (∼12.8 ns), obvious up-conversion luminescence originating from two-photon absorption, superbly strong photostability, and favorable low toxicity. As a satisfactory probe, the as-synthesized SiNPs were successfully applied in fluorescence imaging of human cervical carcinoma cell lines (HeLa) and zebrafish.
Collapse
Affiliation(s)
- Hong-Li Ye
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Shi-Jiao Cai
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine , Tianjin 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yu-Hao Li
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine , Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University , Tianjin 300071, China.,National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
24
|
Hu Q, Meng X, Chan W. An investigation on the chemical structure of nitrogen and sulfur codoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2016; 408:5347-57. [DOI: 10.1007/s00216-016-9631-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
|
25
|
Campos BB, Oliva MM, Contreras-Cáceres R, Rodriguez-Castellón E, Jiménez-Jiménez J, da Silva JCGE, Algarra M. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 2016; 465:165-173. [PMID: 26674232 DOI: 10.1016/j.carbon.2016.05.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 05/20/2023]
Abstract
Carbon quantum dots (CQDs) coated with poly(amidoamine) (PAMAM-NH2) dendrimer are prepared from folic acid and phosphoric acid under a hydrothermal procedure. The obtained nanoparticles are successfully used as fluorescent sensor for Pt(IV) (in the form of chloroplatinate ion). CQDs possess many attractive features including uniform dispersion with average size about 13nm for unmodified particles and, ∼30nm when they are coated with PAMAM-NH2 dendrimer. The synthesized nanoparticles have been characterized by elemental analysis, attenuated total reflectance (ATR), X-ray photoelectron (XPS) and Raman spectroscopies, transmission electron microscopy (TEM), dynamic light scattering (DLS), and steady-state and life-time fluorescence. CQDs are used as fluorescent sensor of Pt(IV) ion in aqueous media showing linear quenching effect of their fluorescence. The results obtained demonstrated a limit of detection of 657nM with an accuracy of the method of 0.13% (as RSD, n=10) and sensitivity of 78nM. Moreover, with the presence of other interference species, good results are obtained when applied in real samples from platinum nanoparticles synthesis. The dissolved platinum ions can be quantified in the range 6-96μM with an accuracy of 2.5%.
Collapse
Affiliation(s)
- Bruno B Campos
- Centro de Investigação em Química, Departamento de Geociencias, ambiente e ordenamento do territorio, Faculdade de Ciências da, Universidade do Porto, Porto, Portugal
| | - María Moreno Oliva
- Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Rafael Contreras-Cáceres
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | - José Jiménez-Jiménez
- Departamento de Química Inorgánica, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Joaquim C G Esteves da Silva
- Centro de Investigação em Química, Departamento de Geociencias, ambiente e ordenamento do territorio, Faculdade de Ciências da, Universidade do Porto, Porto, Portugal
| | - Manuel Algarra
- Departamento de Química Inorgánica, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
26
|
Zhang B, Yang Q, Li Z, Hao J. Green synthesis of luminescent carbon dots and carbon-coated metal particles: Two birds with one stone. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Kang YF, Fang YW, Li YH, Li W, Yin XB. Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem Commun (Camb) 2015; 51:16956-9. [PMID: 26445735 DOI: 10.1039/c5cc06304c] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomolecule-mimicking nitrogen-doped carbon dots (N-Cdots) were synthesized from dopamine by a neutralization heat strategy. Fluorescence imaging of various cells validated their nucleus-staining efficiency. The dopamine-mimicking N-Cdots "trick" nuclear membranes to achieve nuclear localization and imaging.
Collapse
Affiliation(s)
- Yan-Fei Kang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
28
|
Palashuddin Sk M, Goswami U, Ghosh SS, Chattopadhyay A. Cu 2+-embedded carbon nanoparticles as anticancer agents. J Mater Chem B 2015; 3:5673-5677. [PMID: 32262562 DOI: 10.1039/c5tb00567a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the synthesis of luminescent carbon nanoparticles (93 ± 50 nm) embedded with Cu2+. It was observed that at a relatively low concentration of Cu2+ (2.55 ppm), cervical cancer HeLa cells died due to apoptosis induced by the nanoparticles. Also, generation of reactive oxygen species in the cells, in the presence of the composite nanoparticles, has been attributed to their killing. The luminescence of the carbon nanoparticles was used for imaging of the cells.
Collapse
Affiliation(s)
- Md Palashuddin Sk
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
29
|
Baptista FR, Belhout SA, Giordani S, Quinn SJ. Recent developments in carbon nanomaterial sensors. Chem Soc Rev 2015; 44:4433-53. [DOI: 10.1039/c4cs00379a] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural diversity of carbon nanomaterials provides an array of unique electronic, magnetic and optical properties, which when combined with their robust chemistry and ease of manipulation, makes them attractive candidates for sensor applications. In this review recent developments in the use of carbon nanoparticles and nanostructures as sensors and biosensors are explored.
Collapse
Affiliation(s)
| | - S. A. Belhout
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - S. Giordani
- Istituto Italiano di Tecnologia (IIT)
- Nano Carbon Materials
- Nanophysics Department
- 16163 Genova
- Italy
| | - S. J. Quinn
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|