1
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Halama K, Schaffer A, Rieger B. Allyl group-containing polyvinylphosphonates as a flexible platform for the selective introduction of functional groups via polymer-analogous transformations. RSC Adv 2021; 11:38555-38564. [PMID: 35493229 PMCID: PMC9044137 DOI: 10.1039/d1ra06452e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Polyvinylphosphonates are highly promising candidates for (bio)medical applications as they exhibit a tunable lower critical solution temperature, high biocompatibility of homo- and copolymers, and a broad foundation for post-synthetic modifications. In this work we explored polymer-analogous transformations with statistical polyvinylphosphonates comprising diethyl vinylphosphonate (DEVP) and diallyl vinylphosphonate (DAlVP). The C[double bond, length as m-dash]C double bonds were used as a starting point for a cascade of organic transformations. Initially, the reactive moieties were successfully introduced via bromination, epoxidations with OXONE and mCPBA, or thiol-ene click chemistry with methyl thioglycolate (6). The obtained substrates were then employed in a variety of consecutive reactions depending on the introduced functional motif: (1) the brominated substrates were converted with sodium azide to enable the copper-mediated alkyne-azide coupling with phenylacetylene (1). (2) The epoxides were reacted with sodium azide for an alkyne-azide click coupling with 1 as well as small nucleophilic compounds (phenol (2), benzylamine (3), and 4-amino-2,1,3-benzothiadiazol (4)). Afterwards the non-converted allyl groups were reacted with thiochloesterol (5) to form complex polymer conjugates. (3) An acid-labile hydrazone-linked conjugate was formed in a two-step approach. The polymeric substrates were characterized by NMR, FTIR, and UV/Vis spectroscopy as well as elemental analysis and gel permeation chromatography to monitor the structural changes of the polymeric substrates and to prove the success of these modification approaches.
Collapse
Affiliation(s)
- Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| | - Andreas Schaffer
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich Lichtenbergstraße 4 85748 Garching near Munich Germany
| |
Collapse
|
3
|
pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Zhang M, Liu Y, Peng J, Liu Y, Liu F, Ma W, Ma L, Yu CY, Wei H. Facile construction of stabilized, pH-sensitive micelles based on cyclic statistical copolymers of poly(oligo(ethylene glycol)methyl ether methacrylate- st-N, N-dimethylaminoethyl methacrylate) for in vitro anticancer drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py01076f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study developed a facile approach to improve the colloidal stability of a cyclic polycation as well as presented a pH-sensitive cyclic copolymer-based nanoplatform with great potential for anticancer drug delivery.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology
- University of South China
- Hengyang
- China
| | - Jinlei Peng
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Yuping Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Wei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology
- University of South China
- Hengyang
- China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|
5
|
Xu J, He M, Hou X, Wang Y, Shou C, Cai X, Yuan Z, Yin Y, Lan M, Lou K, Zhao Y, Yang Y, Chen X, Gao F. Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Mol Pharm 2019; 17:301-315. [PMID: 31765570 DOI: 10.1021/acs.molpharmaceut.9b01038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controversy surrounding the use of diphtheria toxin (DT) as a therapeutic agent against tumor cells arises mainly from its unexpected harmfulness to healthy tissues. We encoded the cytotoxic fragment A of DT (DTA) as an objective gene in the Light-On gene-expression system to construct plasmids pGAVPO (pG) and pU5-DTA (pDTA). Meanwhile, a cRGD-modified ternary complex comprising plasmids, chitosan, and liposome (pG&pDTA@cRGD-CL) was prepared as a nanocarrier to ensure transfection efficiency. Benefiting from spatiotemporal control of this light-switchable transgene system and the superior tumor targeting of the carrier, toxins were designed to be expressed selectively in illuminated lesions. In vitro studies suggested that pG&pDTA@cRGD-CL exerted arrest of the S phase in B16F10 cells upon blue light irradiation and, ultimately, induced the apoptosis and necrosis of tumor cells. Such DTA-based treatment exerted enhanced antitumor activity in mice bearing B16F10 xenografts and displayed prolonged survival time with minimal side effects. Hence, we described novel DTA-based therapy combined with nanotechnology and the Light-On gene-expression system: such treatment could be a promising strategy against melanoma.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Muye He
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyu Hou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaoran Cai
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Zeting Yuan
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai 200062 , China
| | - Yu Yin
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design and Shanghai Key Laboratory of Chemical Biology , East China University of Science and Technology , Shanghai 200237 , China
| | - Yuzheng Zhao
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Yi Yang
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Xianjun Chen
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology , East China University of Science and Technology , Shanghai 200237 , China.,Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China.,Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
6
|
Efficient synthesis of cRGD functionalized polymers as building blocks of targeted drug delivery systems. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
8
|
Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J Colloid Interface Sci 2018; 514:584-591. [DOI: 10.1016/j.jcis.2017.12.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022]
|
9
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
10
|
Meng H, Zou Y, Zhong P, Meng F, Zhang J, Cheng R, Zhong Z. A Smart Nano-Prodrug Platform with Reactive Drug Loading, Superb Stability, and Fast Responsive Drug Release for Targeted Cancer Therapy. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yan Zou
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Ping Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
11
|
Guo Y, Niu B, Song Q, Zhao Y, Bao Y, Tan S, Si L, Zhang Z. RGD-decorated redox-responsived-α-tocopherol polyethylene glycol succinate–poly(lactide) nanoparticles for targeted drug delivery. J Mater Chem B 2016; 4:2338-2350. [DOI: 10.1039/c6tb00055j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel kind of copolymer, TPGS-SS-PLA, was successfully synthesized and applied in targeted drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy
- Liyuan Hospital
- Tongji Medical School
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Boning Niu
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Qingle Song
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yongdan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yuling Bao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Songwei Tan
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Luqin Si
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
- Hubei Engineering Research Center for NDDS
| |
Collapse
|
12
|
Guan X, Li C, Wang D, Sun W, Gai X. A tumor-targeting protein nanoparticle based on Tat peptide and enhanced green fluorescent protein. RSC Adv 2016. [DOI: 10.1039/c5ra27411g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protein-based nanoparticle containing cell penetrating peptides (CPPs) and enhanced green fluorescent protein (EGFP) was developed through a genetic engineering method.
Collapse
Affiliation(s)
- Xingang Guan
- Life Science Research Center
- Beihua University
- Jilin 132013
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Chun Li
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Dan Wang
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Weiqi Sun
- School of Public Health
- Beihua University
- Jilin 132013
- P. R. China
| | - Xiaodong Gai
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| |
Collapse
|
13
|
pH-responsive polymer–drug conjugates: Design and progress. J Control Release 2016; 222:116-29. [DOI: 10.1016/j.jconrel.2015.12.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
|
14
|
Xu H, Ma H, Yang P, Zhang X, Wu X, Yin W, Wang H, Xu D. Targeted polymer-drug conjugates: Current progress and future perspective. Colloids Surf B Biointerfaces 2015; 136:729-34. [PMID: 26513756 DOI: 10.1016/j.colsurfb.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The combination of polymer technology and targeted drug delivery may pave the way for more effective yet safer therapeutic options for cancer therapy. Polymer-drug conjugates belonging to polymer therapeutics represent an emerging approach for drug delivery. The development of smart targeted polymer-drug conjugates that can specifically deliver drugs at a sustained rate to tumor cells may substantially improve the therapeutic index of anticancer agents. In this update, we provide an overview of the most important targeting molecules, and systemically summarize the recent advances in the development of tumor-targeted polymer-drug conjugates. Additionally, several promising approaches for the future will also be presented.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Haifeng Ma
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China.
| | - Peimin Yang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Xia Zhang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Xiangxia Wu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Weidong Yin
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Hui Wang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Dongmei Xu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| |
Collapse
|
15
|
Zhang J, Zhang M, Ji J, Fang X, Pan X, Wang Y, Wu C, Chen M. Glycyrrhetinic Acid-Mediated Polymeric Drug Delivery Targeting the Acidic Microenvironment of Hepatocellular Carcinoma. Pharm Res 2015; 32:3376-90. [PMID: 26148773 DOI: 10.1007/s11095-015-1714-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/14/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE The major hurdle of current drug carrier against hepatocellular carcinoma (HCC) is the lack of specific and selective drug delivery to HCC. In this study, a novel glycyrrhetinic acid (GA) and poly(L-Histidine) (PHIS) mediated polymeric drug delivery system was developed to target HCC that have GA binding receptors and release its encapsulated anticancer drug in the acidic microenvironment of HCC. METHODS Firstly, GA and PHIS were conjugated to form poly (ethylene glycol)-poly(lactic-co-glycolic acid) (GA-PEG-PHIS-PLGA, GA-PPP) micelles by grafting reaction between active terminal groups. Secondly, andrographolide (AGP) was encapsulated to GA-PPP to make AGP/GA-PPP using the solvent evaporation method. The pH-responsive property of AGP/GA-PPP micelles was validated by monitoring its stability and drug release behavior in different pH conditions. Furthermore, selective hepatocellular uptake of GA-PPP micelles in vitro, liver specific drug accumulation in vivo, as well as the enhanced antitumor effects of AGP/GA-PPP micelles confirmed the HCC targeting property of our novel drug delivery system. RESULTS Average size of AGP/GA-PPP micelles increased significantly and the encapsulated AGP released faster in vitro at pH 5.0, while micelles keeping stable in pH 7.4. AGP/GA-PPP micelles were uptaken more efficiently by human Hep3B liver cells than that by human MDA-MB-231 breast cancer cells. GA-PPP micelles accumulated specifically in the liver and possessed long retention time in vivo. AGP/GA-PPP micelles significantly inhibited tumor growth and provided better therapeutic outcomes compared to free AGP and AGP/PEG-PLGA(AGP/PP) micelles without GA and PHIS decoration. CONCLUSIONS This novel GA-PPP polymeric carrier is promising for targeted treatment of HCC.
Collapse
Affiliation(s)
- Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau, 999078, China
| | - Min Zhang
- School of Chemistry and Chemical engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juan Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau, 999078, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomas Pereira S.J., Taipa, Macau, 999078, China.
| |
Collapse
|
16
|
Ford J, Chambon P, North J, Hatton FL, Giardiello M, Owen A, Rannard SP. Multiple and Co-Nanoprecipitation Studies of Branched Hydrophobic Copolymers and A–B Amphiphilic Block Copolymers, Allowing Rapid Formation of Sterically Stabilized Nanoparticles in Aqueous Media. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jane Ford
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Pierre Chambon
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Jocelyn North
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Fiona L. Hatton
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Marco Giardiello
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Andrew Owen
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, U.K
| | - Steve P. Rannard
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
17
|
Guan X, Hu X, Li Z, Zhang H, Xie Z. cRGD targeted and charge conversion-controlled release micelles for doxorubicin delivery. RSC Adv 2015. [DOI: 10.1039/c4ra14368j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biodegradable polymeric micelle with cRGD targeting and charge-conversional moiety could enhance the cellular uptake of pharmaceuticals and result in high cytotoxicity to tumor cells.
Collapse
Affiliation(s)
- Xingang Guan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhihong Li
- Department of Thoracic Surgery
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Hong Zhang
- Department of Thoracic Surgery
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
18
|
Tang CY, Liao YH, Tan GS, Wang XM, Lu GH, Yang YH. Targeted photosensitizer nanoconjugates based on human serum albumin selectively kill tumor cells upon photo-irradiation. RSC Adv 2015. [DOI: 10.1039/c5ra05251c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Small and non-toxic nanoconjugates RGD–HSA–Ce6 could provide targeted and effective photodynamic therapy of tumor cells.
Collapse
Affiliation(s)
- Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Yong-hui Liao
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Guo-Sheng Tan
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- School of Life Sciences
- Nanjing University
- Nanjing 210093
| |
Collapse
|