Cao M, Sun Q, Zhang X, Ma Y, Wang J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system.
Biosens Bioelectron 2021;
182:113173. [PMID:
33773383 DOI:
10.1016/j.bios.2021.113173]
[Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most common clinical infectious disease threatening the safety of human life. Herein, we provided a sensitive and specific method for detection and differentiation of RSV subgroups A (RSVA) and B (RSVB) with colorimetric toehold switch sensors in a paper-based cell-free system. In this method, we applied the toehold switch, an RNA-based riboswitch, to regulate the translation level of β-galactosidase (lacZ) gene. In the presence of target trigger RNA, the toehold switch sensor was activated and the expressed LacZ hydrolyzed chromogenic substrates to produce a colorimetric result that can be observed directly with the naked eye in a cell-free system. In addition, nucleic acid sequence-based amplification (NASBA) was used to improve the sensitivity by amplifying target trigger RNAs. Under optimal conditions, our method produced a visible result for the detection of RSVA and RSVB with the detection limit of 52 aM and 91 aM, respectively. The cross-reaction of this method was validated with other closely related respiratory viruses, including human coronavirus HKU1 (HCoV-HKU1), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, we used the paper-based carrier material that allows stable storage of our detection elements and rapid detection outside laboratory. In conclusion, this method can sensitively and specifically differentiate RSVA and RSVB and generate a visible colorimetric result without specialized operators and sophisticated equipment. Based on these advantages above, this method serves as a simple and portable detector in resource-poor areas and point-of-care testing (POCT) scenarios.
Collapse