1
|
Tang Y, Han Z, Zhang H, Che L, Liao G, Peng J, Lin Y, Wang Y. Characterization of Calculus bovis by principal component analysis assisted qHNMR profiling to distinguish nefarious frauds. J Pharm Biomed Anal 2023; 228:115320. [PMID: 36871364 DOI: 10.1016/j.jpba.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
A new approach is developed for the reliable classification of Calculus bovis along with the identification of willfully contaminated C. bovis species and the quantification of unclaimed adulterants. Guided by a principal component analysis, NMR data mining achieved a near-holistic chemical characterization of three types of authenticated C. bovis, including natural C. bovis (NCB), in vitro cultured C. bovis (Ivt-CCB), and artificial C. bovis (ACB). In addition, species-specific markers used for quality evaluation and species classification were confirmed. That is, the content of taurine in NCB is near negligible, while choline and hyodeoxycholic acid are characteristic for identifying Ivt-CCB and ACB, respectively. Besides, the peak shapes and chemical shifts of H2-25 of glycocholic acid could assist in the recognition of the origins of C. bovis. Based on these discoveries, a set of commercial NCB samples, macroscopically identified as problematic species, was examined with deliberately added sugars and outliers discovered. Absolute quantification of the identified sugars was realized by qHNMR using a single, nonidentical internal calibrant (IC). This study represents the first systematic study of C. bovis metabolomics via an NMR-driven methodology, which advances the toolbox for quality control of TCM and provides a more definitive reference point for future chemical and biological studies of C. bovis as a valuable materia medica.
Collapse
Affiliation(s)
- Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Zhu Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Genjie Liao
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Jun Peng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Fang T, Jia G, Zhao H, Chen X, Wu C, Xue B, Cai J, Tian G, Wang J, Liu G. Effects of spermine supplementation on blood biochemical parameters, amino acid profile and ileum expression of amino acid transporters in piglets. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/114433/2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Rodríguez M, G Rebollar P, Mattioli S, Castellini C. n-3 PUFA Sources (Precursor/Products): A Review of Current Knowledge on Rabbit. Animals (Basel) 2019; 9:ani9100806. [PMID: 31618904 PMCID: PMC6827073 DOI: 10.3390/ani9100806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar G Rebollar
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|
4
|
External spermine prevents UVA-induced damage of Synechocystis sp. PCC 6803 via increased catalase activity and decreased H2O2 and malonaldehyde levels. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
5
|
Guo YX, Nie HT, Xu CJ, Zhang GM, Sun LW, Zhang TT, Wang Z, Feng X, You PH, Wang F. Effects of nutrient restriction and arginine treatment on oxidative stress in the ovarian tissue of ewes during the luteal phase. Theriogenology 2018; 113:127-136. [DOI: 10.1016/j.theriogenology.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
|
6
|
Effects of spermine on the antioxidant status and gene expression of antioxidant-related signaling molecules in the liver and longissimus dorsi of piglets. Animal 2018; 12:1208-1216. [DOI: 10.1017/s1751731117002737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Cao W, Xu X, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Cai J, Liu G. Roles of spermine in modulating the antioxidant status and Nrf2 signalling molecules expression in the thymus and spleen of suckling piglets-new insight. J Anim Physiol Anim Nutr (Berl) 2017; 102:e183-e192. [DOI: 10.1111/jpn.12726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- W. Cao
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - X. Xu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - G. Jia
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - H. Zhao
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - X. Chen
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - C. Wu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - J. Tang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - J. Wang
- Maize Research Institute; Sichuan Agricultural University; Chengdu China
| | - J. Cai
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - G. Liu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| |
Collapse
|
9
|
Wan J, Jiang F, Xu Q, Chen D, Yu B, Huang Z, Mao X, Yu J, He J. New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Adv 2017. [DOI: 10.1039/c7ra00142h] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan oligosaccharide (COS), an oligomer ofd-glucosamine, is a vital growth stimulant in the pig industry.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Fei Jiang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Qingsong Xu
- College of Fisheries and Life Science
- Dalian Ocean University
- Dalian 116023
- People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jun He
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| |
Collapse
|
10
|
Liu G, Xiao L, Cao W, Fang T, Jia G, Chen X, Zhao H, Wu C, Wang J. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy. Food Funct 2016; 7:964-74. [PMID: 26732548 DOI: 10.1039/c5fo01486g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P < 0.05) in plasma. Compared with the diquat group, the arginine + diquat group had significantly higher levels of citrate, creatinine, homogentisate, and α-ketoglutarate while lower levels of acetamide, citrulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, propionate, and β-glucose (P < 0.05) in urine. Compared with the diquat group, the N-carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol, hippurate, lactate, N-acetylglutamate, nicotinamide, ornithine, and trigonelline (P < 0.05) in urine. Overall, these results suggest that arginine and N-carbamylglutamate can alter the metabolome associated with energy metabolism, amino acid metabolism, and gut microbiota metabolism under oxidative stress.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China. and Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
11
|
Wu X, Cao W, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Liu G. New insights into the role of spermine in enhancing the antioxidant capacity of rat spleen and liver under oxidative stress. ACTA ACUST UNITED AC 2016; 3:85-90. [PMID: 29767047 PMCID: PMC5941080 DOI: 10.1016/j.aninu.2016.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
Oxidative stress can damage cellular antioxidant defense and reduce livestock production efficiency. Spermine is a ubiquitous cellular component that plays important roles in stabilizing nucleic acids, modulating cell growth and differentiation, and regulating ion channel activities. Spermine has the potential to alleviate the effects of oxidative stress. However, to date no information is available about the effect of spermine administration on antioxidant property of the liver and spleen in any mammalian in vivo system. This study aims to investigate the protective effect of spermine on rat liver and spleen under oxidative stress. Rats received intragastric administration of either 0.4 μmol/g body weight of spermine or saline once a day for 3 days. The rats in each treatment were then injected with either diquat or sterile saline at 12 mg/kg body weight. Liver and spleen samples were collected 48 h after the last spermine ingestion. Results showed that regardless of diquat treatment, spermine administration significantly reduced the malondialdehyde (MDA) content by 23.78% in the liver and by 5.75% in the spleen, respectively (P < 0.05). Spermine administration also enhanced the catalase (CAT) activity, anti-hydroxyl radical (AHR) capacity and glutathione (GSH) content by 38.68%, 15.53% and 1.32% in the spleen, respectively (P < 0.05). There were interactions between spermine administration and diquat injection about anti-superoxide anion (ASA), AHR capacity, CAT activity, GSH content, and total antioxidant capacity (T-AOC) in the liver and about ASA capacity and T-AOC in the spleen of weaned rats (P < 0.05). Compared with the control group, spermine administration significantly increased the AHR capacity, CAT activity, GSH content, and T-AOC by 40.23%, 31.15%, 30.25%, 35.37% in the liver, respectively (P < 0.05) and increased the T-AOC by 8% in the spleen of weaned rats (P < 0.05). Compared with the diquat group, spermine + diquat group significantly increased ASA capacity by 15.63% in the liver and by 73.41% in the spleen of weaned rats, respectively (P < 0.05). Results demonstrate that spermine administration can increase the antioxidant capacity in the liver and spleen and can enhance the antioxidant status in the spleen and liver under oxidative stress.
Collapse
Affiliation(s)
- Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
- Corresponding author.
| |
Collapse
|
12
|
Effects of spermine supplementation on the morphology, digestive enzyme activities, and antioxidant capacity of intestine in weaning rats. ACTA ACUST UNITED AC 2016; 2:370-375. [PMID: 29767070 PMCID: PMC5941048 DOI: 10.1016/j.aninu.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022]
Abstract
The main objective of this study was to investigate the effects of different doses of spermine and its extended supplementation on the morphology, digestive enzyme activities, and intestinal antioxidant capacity in weaning rats. Nineteen-day-old male rats received intragastric spermine at doses of 0.2 and 0.4 μmol/g BW for 3 or 7 d, whereas control rats received similar doses of saline. The results are as follows: 1) In the jejunum, the seven-day supplementation with both doses of spermine significantly increased crypt depth (P < 0.05) compared with the control group; the supplementation extension of the high spermine dose increased villus height and crypt depth (P < 0.05); in the ileum, the low spermine dose significantly increased villus height and crypt depth compared with the control group for 7 days (P < 0.05). 2) The 3-day supplementation with high spermine dose increased alkaline phosphatase activity in the jejunum (P < 0.05). 3) In the jejunum, the anti-hydroxyl radical (AHR), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); however, the malondialdehyde (MDA) content was reduced (P < 0.05) in groups supplemented with the high spermine dose relative to those in the control groups after 3 and 7 d; moreover, the anti-superoxide anion (ASA) and glutathione (GSH) contents increased with the high spermine dose that lasted for 3 days (P < 0.05). Furthermore, the T-SOD and CAT activities (after 3 and 7 d), ASA (after 3 d), and AHR (after 7 d) increased with the high spermine dose compared with those of the low spermine dose (P < 0.05). Extending the supplementation duration (7 d) of the high spermine dose decreased the MDA content and ASA and T-AOC activities (P < 0.05). These results suggested that spermine supplementation can modulate gut development and enhance the antioxidant status of the jejunum in weaning rats, and a dosage of 0.4 μmol spermine/g BW had better effects than the dosage of 0.2 μmol spermine/g BW on accelerating gut development and increasing antioxidant capacity.
Collapse
|
13
|
Liu G, Wu X, Jia G, Chen X, Zhao H, Wang J, Wu C, Cai J. Arginine: New Insights into Growth Performance and Urinary Metabolomic Profiles of Rats. Molecules 2016; 21:E1142. [PMID: 27589702 PMCID: PMC6273504 DOI: 10.3390/molecules21091142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/06/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023] Open
Abstract
Arginine regulates growth performance, nutrient metabolism and health effects, but the underlying mechanism remains unknown. This study aims to investigate the effect of dietary arginine supplementation on rat growth performance and urinary metabolome through ¹H-NMR spectroscopy. Twenty rats were randomly assigned to two groups supplemented with 0% or 1.0% l-arginine for 4 weeks. Urine samples were analyzed through NMR-based metabolomics. Arginine supplementation significantly increased the urine levels of 4-aminohippurate, acetate, creatine, creatinine, ethanolamine, formate, hippurate, homogentisate, indoxyl sulfate, and phenylacetyglycine. Conversely, arginine decreased the urine levels of acetamide, β-glucose, cirtulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, and propionate. Results suggested that arginine can alter common systemic metabolic processes, including energy metabolism, amino acid metabolism, and gut microbiota metabolism. Moreover, the results also imply a possible physiological role of the metabolism in mediating the arginine supplementation-supported growth of rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Cai J, Wang J. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct 2016; 7:2303-11. [PMID: 27109002 DOI: 10.1039/c5fo01194a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Carbamylglutamate (NCG), an effective precursor of arginine (ARG), can enhance ARG synthesis, increase intestinal growth, and improve reproductive performance. However, the antioxidant effect of NCG remains largely unknown. This study aims to survey the effects of ARG and NCG supplementation on the antioxidant statuses of the liver and plasma in rats under oxidative stress. Rats were fed for 30 days with one of the three iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, and BD plus 0.1% NCG. On day 28, half of the rats fed with BD were intraperitoneally injected with 12 mg per kg body weight of diquat (diquat group) and the other half was injected intraperitoneally with sterile 0.9% NaCl solution (control group). The other diet groups also received an intraperitoneal injection of 12 mg per kg body weight of diquat, as follows: diquat + 1% ARG (DT + ARG), and diquat + 0.1% NCG (DT + NCG). Rat liver and plasma samples obtained 48 h after diquat injection were analyzed. Results indicated that diquat significantly affected the plasma conventional biochemical components (relative to the controls), which were partially alleviated in both the DT + ARG and DT + NCG groups (P < 0.05). Diquat also significantly decreased the glutathione (GSH) content (by 30.0%), and decreased anti-superoxide anion (ASA; by 13.8%) and anti-hydroxyl radical (AHR; by 38.9%) abilities in the plasma, and also decreased catalase (CAT) activity both in the liver (by 17.5%) and plasma (by 33.4%) compared with the control group. By contrast, diquat increased the malondialdehyde (MDA) content (by 23.0%) in the plasma (P < 0.05) compared with the control group. Relative to those of the diquat group, higher CAT activity and GSH content were noted in the plasma of the DT + ARG group and in the liver of both DT + ARG and DT + NCG groups (P < 0.05). Furthermore, the DT + ARG group exhibited significantly enhanced plasma ASA activity (P < 0.05). The DT + NCG group showed significantly improved total antioxidant capacity (T-AOC) in the liver and plasma (P < 0.05). Increased GSH content and elevated ASA and AHR activities were also found, but the MDA content in the plasma was depleted (P < 0.05). Compared with the DT + ARG group, the DT + NCG group showed increased liver and plasma T-AOC, enhanced plasma AHR activity, increased liver ASA activity, and decreased plasma MDA content (P < 0.05). Overall, supplementation of 1% ARG and 0.1% NCG can partially protect the liver and plasma from oxidative stress. Furthermore, compared with 1% ARG, 0.1% NCG more effectively alleviated oxidative stress.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiao L, Cao W, Liu G, Fang T, Wu X, Jia G, Chen X, Zhao H, Wang J, Wu C, Cai J. Arginine, N-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine. ACTA ACUST UNITED AC 2016; 2:242-248. [PMID: 29767095 PMCID: PMC5941035 DOI: 10.1016/j.aninu.2016.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The objective of the current study is to evaluate the effects of dietary supplementation with arginine (ARG), N-carbamylglutamate (NCG), and glutamine (GLN) on rat intestinal morphology and antioxidant status under oxidative stress. Rats were fed for 30 d with one of the following iso-nitrogenous diets: basal diet (BD), BD plus 1% ARG, BD plus 0.1% NCG, and BD plus 1% GLN. On day 28, half of the rats fed BD were intraperitoneally injected with 12 mg/kg body weight of diquat (DT; i.e., the DT group) and the other half was intraperitoneally injected with sterile solution (i.e., the control group). The other diet groups were intraperitoneally injected with 12 mg/kg body weight of DT (i.e., DT + 1% GLN [DT + GLN], DT + 1% ARG [DT + ARG], and DT + 0.1% NCG [DT + NCG]). Rat jejunum samples obtained at 48 h after DT injection were analyzed. Results showed that DT significantly decreased catalase (CAT) activity and glutathione (GSH) content by 58.25% and 56.57%, respectively, and elevated malondialdehyde (MDA) content and crypt depth (CD) by 19.39% and 22.13%, respectively, in the jejunum (P < 0.05, relative to the control group). Compared with the DT group, the DT + GLN group exhibited significantly improved villus height (VH), villus width (VW), villus surface area (VSA), CD and total antioxidant capacity (T-AOC) activity (P < 0.05); the DT + ARG group exhibited significantly increased the ratio of VH to CD (H:D) and T-AOC activity (P < 0.05); the DT + GLN, DT + ARG and DT + NCG groups exhibited significantly enhanced CAT activity and GSH content as well as decreased MDA content (P < 0.05). Moreover, VH, VW, VSA, CD and GSH content in the DT + GLN group were higher whereas MDA content was lower compared with the corresponding values observed in both the DT + ARG and the DT + NCG groups (P < 0.05). The H:D ratio in the DT + ARG group significantly increased compared with that in the DT + NCG and DT + GLN groups (P < 0.05). Collectively, this study suggested that dietary supplementation with 1% GLN, 0.1% NCG, and 1% ARG was effective in enhancing the antioxidant status and maintaining the morphological structure of rat jejunum under oxidative stress; of these supplements, 1% GLN exerted the greatest effects on mitigating oxidative stress.
Collapse
Affiliation(s)
- Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Wei Cao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xianjian Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 611130, China
| |
Collapse
|
16
|
Fang T, Liu G, Cao W, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Spermine: new insights into the intestinal development and serum antioxidant status of suckling piglets. RSC Adv 2016. [DOI: 10.1039/c6ra05361k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work aimed at investigating the effects of spermine supplementation and extended spermine administration on the intestinal morphology, enzyme activity, and serum antioxidant capacity of suckling piglets.
Collapse
Affiliation(s)
- Tingting Fang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Wei Cao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xianjian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
17
|
Liu G, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Effects of glutamine against oxidative stress in the metabolome of rats—new insight. RSC Adv 2016. [DOI: 10.1039/c6ra14469a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamine exerts potential functions against the harmful effects of oxidative stress on animals.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - XianJian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
18
|
Liu G, Yan T, Fang T, Jia G, Chen X, Zhao H, Wang J, Wu C. Nutrimetabolomic analysis provides new insights into spermine-induced ileum-system alterations for suckling rats. RSC Adv 2015. [DOI: 10.1039/c5ra01507c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of spermine supplementation on the ileum metabolism of suckling rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Tao Yan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Tingting Fang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| |
Collapse
|