1
|
Paisidis P, Kokotou MG, Kotali A, Psomas G, Fylaktakidou KC. One-Pot, Multi-Component Green Microwave-Assisted Synthesis of Bridgehead Bicyclo[4.4.0]boron Heterocycles and DNA Affinity Studies. Int J Mol Sci 2024; 25:9842. [PMID: 39337330 PMCID: PMC11432172 DOI: 10.3390/ijms25189842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Anthranilic acids, salicylaldehydes and arylboronic acids reacted in EtOH/H2O (1/3) at 150 °C under microwave irradiation for 1 h to give, in excellent yields and purity, twenty-three bridgehead bicyclo[4.4.0]boron heterocycles via one-pot, three-component green synthesis. The scope and the limitations of the reactions are discussed in terms of the substitution of ten different anthranilic acids, three salicylaldehydes and three arylboronic acids. The replacement of salicylaldehyde with o-hydroxyacetophenone demanded a lipophilic solvent for the reaction to occur. Eight novel derivatives were isolated following crystallization in a toluene-containing mixture that included molecular sieves. The above one-pot, three-component reactions were completed under microwave irradiation at 180 °C within 1.5 h, thus avoiding the conventional prolonged heating reaction times and the use of a Dean-Stark apparatus. All derivatives were studied for their affinity to calf thymus DNA using proper techniques like viscosity and UV-vis spectroscopy, where DNA-binding constants were found in the range 2.83 × 104-8.41 × 106 M-1. Ethidium bromide replacement studies using fluorescence spectroscopy indicated Stern-Volmer constants between 1.49 × 104 and 5.36 × 104 M-1, whereas the corresponding quenching constants were calculated to be between 6.46 × 1011 and 2.33 × 1012 M-1 s-1. All the above initial experiments show that these compounds may have possible medical applications for DNA-related diseases.
Collapse
Affiliation(s)
- Polinikis Paisidis
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Antigoni Kotali
- Laboratory of Organic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Abdou-Mohamed A, Aupic C, Fournet C, Parrain JL, Chouraqui G, Chuzel O. Stereoselective formation of boron-stereogenic organoboron derivatives. Chem Soc Rev 2023. [PMID: 37325998 DOI: 10.1039/d3cs00163f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Four-coordinate organoboron derivatives present interesting chemical, physical, biological, electronical, and optical properties. Given the increasing demand for the synthesis of smart functional materials based on chiral organoboron compounds, the exploration of stereoselective synthesis of boron-stereogenic organo-derivatives is highly desirable. However, the stereoselective construction of organoboron compounds stereogenic at boron has been far less studied than other elements of the main group due to configurational stability concerns. Nowadays, these species are no longer elusive and configurationally stable compounds have been highlighted. The idea is to show the potential of the stereoselective building of the four-coordinate boron centre and encourage future endeavors and developments in the field.
Collapse
Affiliation(s)
| | - Clara Aupic
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Corentin Fournet
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Olivier Chuzel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
3
|
Leandro P, Lino PR, Lopes R, Leandro J, Amaro MP, Sousa P, Vicente JB, Almeida AJ. Isothermal denaturation fluorimetry vs Differential scanning fluorimetry as tools for screening of stabilizers for protein freeze-drying: human phenylalanine hydroxylase as the case study. Eur J Pharm Biopharm 2023; 187:1-11. [PMID: 37011788 DOI: 10.1016/j.ejpb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein. Therefore, they should be screened for on a time-consuming case-by-case basis. Herein, differential scanning fluorimetry (DSF) and isothermal denaturation fluorimetry (ITDF) were employed to screen, among different classes of freeze-drying additives, for the most effective stabilizer of the model protein human phenylalanine hydroxylase (hPAH). Correlation studies among retrieved DSF and ITDF parameters with recovered enzyme amount and activity indicated ITDF as the most appropriate screening method. Biochemical and biophysical characterization of hPAH freeze-dried with ITDF-selected stabilizers and a long-term storage study (12 months, 5 ± 3 °C) showed that the selected compounds prevented protein aggregation and preserved hPAH structural and functional properties throughout time storage. Our results provide a solid basis towards the choice of ITDF as a high-throughput screening step for the identification of protein freeze-drying protectors.
Collapse
Affiliation(s)
- Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paulo R Lino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Raquel Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana P Amaro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paulo Sousa
- Sofarimex, Indústria Química e Farmacêutica SA, Av. das Indústrias, Alto de Colaride, 2735-521 Agualva, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República 2780-157 Oeiras, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
4
|
Alves MMS, Leandro P, Mertens HDT, Pereiro AB, Archer M. Impact of Fluorinated Ionic Liquids on Human Phenylalanine Hydroxylase-A Potential Drug Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:893. [PMID: 35335706 PMCID: PMC8950220 DOI: 10.3390/nano12060893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Phenylketonuria (PKU) is an autosomal recessive disease caused by deficient activity of human phenylalanine hydroxylase (hPAH), which can lead to neurologic impairments in untreated patients. Although some therapies are already available for PKU, these are not without drawbacks. Enzyme-replacement therapy through the delivery of functional hPAH could be a promising strategy. In this work, biophysical methods were used to evaluate the potential of [N1112(OH)][C4F9SO3], a biocompatible fluorinated ionic liquid (FIL), as a delivery system of hPAH. The results herein presented show that [N1112(OH)][C4F9SO3] spontaneously forms micelles in a solution that can encapsulate hPAH. This FIL has no significant effect on the secondary structure of hPAH and is able to increase its enzymatic activity, despite the negative impact on protein thermostability. The influence of [N1112(OH)][C4F9SO3] on the complex oligomerization equilibrium of hPAH was also assessed.
Collapse
Affiliation(s)
- Márcia M. S. Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal;
- LAQV, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.Ulisboa) and Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Haydyn D. T. Mertens
- European Molecular Biology Lamboratory (EMBL), Hamburg Unit c/o Deutches Elektronen Synchrotron (DESY), D-22607 Hamburg, Germany;
| | - Ana B. Pereiro
- LAQV, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT NOVA), 2829-516 Caparica, Portugal
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal;
| |
Collapse
|
5
|
Lino PR, Leandro J, Figueiredo L, Amaro MP, Gonçalves LMD, Leandro P, Almeida AJ. Systematic Modification and Evaluation of Enzyme-Loaded Chitosan Nanoparticles. Int J Mol Sci 2021; 22:ijms22157987. [PMID: 34360752 PMCID: PMC8348744 DOI: 10.3390/ijms22157987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Polymeric-based nano drug delivery systems have been widely exploited to overcome protein instability during formulation. Presently, a diverse range of polymeric agents can be used, among which polysaccharides, such as chitosan (CS), hyaluronic acid (HA) and cyclodextrins (CDs), are included. Due to its unique biological and physicochemical properties, CS is one of the most used polysaccharides for development of protein delivery systems. However, CS has been described as potentially immunogenic. By envisaging a biosafe cytocompatible and haemocompatible profile, this paper reports the systematic development of a delivery system based on CS and derived with HA and CDs to nanoencapsulate the model human phenylalanine hydroxylase (hPAH) through ionotropic gelation with tripolyphosphate (TPP), while maintaining protein stability and enzyme activity. By merging the combined set of biopolymers, we were able to effectively entrap hPAH within CS nanoparticles with improvements in hPAH stability and the maintenance of functional activity, while simultaneously achieving strict control of the formulation process. Detailed characterization of the developed nanoparticulate systems showed that the lead formulations were internalized by hepatocytes (HepG2 cell line), did not reveal cell toxicity and presented a safe haemocompatible profile.
Collapse
|
6
|
Lopes RR, Tomé CS, Russo R, Paterna R, Leandro J, Candeias NR, Gonçalves LMD, Teixeira M, Sousa PMF, Guedes RC, Vicente JB, Gois PMP, Leandro P. Modulation of Human Phenylalanine Hydroxylase by 3-Hydroxyquinolin-2(1H)-One Derivatives. Biomolecules 2021; 11:biom11030462. [PMID: 33808760 PMCID: PMC8003416 DOI: 10.3390/biom11030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023] Open
Abstract
Phenylketonuria (PKU) is a genetic disease caused by deficient activity of human phenylalanine hydroxylase (hPAH) that, when untreated, can lead to severe psychomotor impairment. Protein misfolding is recognized as the main underlying pathogenic mechanism of PKU. Therefore, the use of stabilizers of protein structure and/or activity is an attractive therapeutic strategy for this condition. Here, we report that 3-hydroxyquinolin-2(1H)-one derivatives can act as protectors of hPAH enzyme activity. Electron paramagnetic resonance spectroscopy demonstrated that the 3-hydroxyquinolin-2(1H)-one compounds affect the coordination of the non-heme ferric center at the enzyme active-site. Moreover, surface plasmon resonance studies showed that these stabilizing compounds can be outcompeted by the natural substrate l-phenylalanine. Two of the designed compounds functionally stabilized hPAH by maintaining protein activity. This effect was observed on the recombinant purified protein and in a cellular model. Besides interacting with the catalytic iron, one of the compounds also binds to the N-terminal regulatory domain, although to a different location from the allosteric l-Phe binding site, as supported by the solution structures obtained by small-angle X-ray scattering.
Collapse
Affiliation(s)
- Raquel R. Lopes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Catarina S. Tomé
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica, Quinta do Marquês, 2780-155 Oeiras, Portugal;
| | - Roberto Russo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Roberta Paterna
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - João Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
| | - Pedro M. F. Sousa
- Instituto de Biologia Experimental e Tecnológica, Quinta do Marquês, 2780-155 Oeiras, Portugal;
| | - Rita C. Guedes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| | - Pedro M. P. Gois
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| |
Collapse
|
7
|
Algoazy N, Knight JG, Waddell PG, Aerts R, Herrebout W, Al-Sharif HHT, Karlsson JKG, Harriman A. Synthesis, Structure and Photophysical Properties of a New Class of Inherently Chiral Boron(III) Chelates-The tert-Leucine Complexes. Chemistry 2021; 27:5246-5258. [PMID: 33370464 DOI: 10.1002/chem.202005246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Indexed: 11/07/2022]
Abstract
A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift. Orange fluorescence is also observed for this compound as a cast film. Temperature-dependence studies show that decay of the fluorescent state is weakly activated but emission is less than quantitative at 77 K. Quite rare for boron(III)-based chelates, this derivative undergoes intersystem crossing to form a meta-stable triplet-excited state. X-ray crystal structures are reported for both compounds, along with simulated ECD spectra.
Collapse
Affiliation(s)
- Nawaf Algoazy
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Julian G Knight
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Paul G Waddell
- Crystallography Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hatun H T Al-Sharif
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Joshua K G Karlsson
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Lino PR, Leandro J, Amaro M, Gonçalves LMD, Leandro P, Almeida AJ. In Silico and In Vitro Tailoring of a Chitosan Nanoformulation of a Human Metabolic Enzyme. Pharmaceutics 2021; 13:pharmaceutics13030329. [PMID: 33806405 PMCID: PMC8000282 DOI: 10.3390/pharmaceutics13030329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/10/2023] Open
Abstract
Enzyme nanoencapsulation holds an enormous potential to develop new therapeutic approaches to a large set of human pathologies including cancer, infectious diseases and inherited metabolic disorders. However, enzyme formulation has been limited by the need to maintain the catalytic function, which is governed by protein conformation. Herein we report the rational design of a delivery system based on chitosan for effective encapsulation of a functionally and structurally complex human metabolic enzyme through ionic gelation with tripolyphosphate. The rationale was to use a mild methodology to entrap the multimeric multidomain 200 kDa human phenylalanine hydroxylase (hPAH) in a polyol-like matrix that would allow an efficient maintenance of protein structure and function, avoiding formulation stress conditions. Through an in silico and in vitro based development, the particulate system was optimized with modulation of nanomaterials protonation status, polymer, counterion and protein ratios, taking into account particle size, polydispersity index, surface charge, particle yield production, protein free energy of folding, electrostatic surface potential, charge, encapsulation efficiency, loading capacity and transmission electron microscopy morphology. Evaluation of the thermal stability, substrate binding profile, relative enzymatic activity, and substrate activation ratio of the encapsulated hPAH suggests that the formulation procedure does not affect protein stability, allowing an effective maintenance of hPAH biological function. Hence, this study provides an important framework for an enzyme formulation process.
Collapse
|
9
|
Tomé CS, Lopes RR, Sousa PMF, Amaro MP, Leandro J, Mertens HDT, Leandro P, Vicente JB. Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability. Sci Rep 2019; 9:13615. [PMID: 31541188 PMCID: PMC6754429 DOI: 10.1038/s41598-019-49944-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/03/2019] [Indexed: 01/30/2023] Open
Abstract
Human phenylalanine hydroxylase (hPAH) hydroxylates L-phenylalanine (L-Phe) to L-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological L-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. L-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH L-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of L-Phe. Binding of L-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.
Collapse
Affiliation(s)
- Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Raquel R Lopes
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M F Sousa
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Mariana P Amaro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
10
|
Hugelshofer CL, Palani V, Sarpong R. Oxazaborinines from Vinylogous N-Allylic Amides: Reactivities of Underexplored Heterocyclic Building Blocks. Org Lett 2018; 20:2649-2653. [PMID: 29667837 DOI: 10.1021/acs.orglett.8b00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Access to a new class of oxazaborinines using an efficient transition-metal-catalyzed rearrangement is demonstrated. The method overcomes the synthetic challenge of achieving an aza-Claisen rearrangement of vinylogous N-allylic amide substrates, giving rise to a variety of highly modifiable oxazaborinine products. An investigation of the unique reactivity of these boron-based heterocycles has unveiled their underexplored potential as valuable building blocks and intermediates for organic synthesis.
Collapse
Affiliation(s)
- Cedric L Hugelshofer
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Vignesh Palani
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Richmond Sarpong
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
11
|
Four-coordinate six-membered ketiminate and diketiminate boron complexes. Synthesis, structure, reactivity, and application in the design of nitrogen heterocycles. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1901-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Jaffe EK. New protein structures provide an updated understanding of phenylketonuria. Mol Genet Metab 2017; 121:289-296. [PMID: 28645531 PMCID: PMC5549558 DOI: 10.1016/j.ymgme.2017.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Phenylketonuria (PKU) and less severe hyperphenylalaninemia (HPA) constitute the most common inborn error of amino acid metabolism, and is most often caused by defects in phenylalanine hydroxylase (PAH) function resulting in accumulation of Phe to neurotoxic levels. Despite the success of dietary intervention in preventing permanent neurological damage, individuals living with PKU clamor for additional non-dietary therapies. The bulk of disease-associated mutations are PAH missense variants, which occur throughout the entire 452 amino acid human PAH protein. While some disease-associated mutations affect protein structure (e.g. truncations) and others encode catalytically dead variants, most have been viewed as defective in protein folding/stability. Here we refine this view to address how PKU-associated missense variants can perturb the equilibrium among alternate native PAH structures (resting-state PAH and activated PAH), thus shifting the tipping point of this equilibrium to a neurotoxic Phe concentration. This refined view of PKU introduces opportunities for the design or discovery of therapeutic pharmacological chaperones that can help restore the tipping point to healthy Phe levels and how such a therapeutic might work with or without the inhibitory pharmacological chaperone BH4. Dysregulation of an equilibrium of architecturally distinct native PAH structures departs from the concept of "misfolding", provides an updated understanding of PKU, and presents an enhanced foundation for understanding genotype/phenotype relationships.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Fox Chase Cancer Center - Temple University Health System, 333 Cottman Ave, Philadelphia, PA 19111, USA.
| |
Collapse
|
13
|
Raunio J, Mannoja J, Nguyen T, Ahmad N, Kemppainen N, Franzén RG, Kandhavelu M, Candeias NR. Base catalysed N-functionalisation of boroxazolidones. RSC Adv 2017. [DOI: 10.1039/c7ra03266h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method for the condensation of boroxazolidones derived froml-valine with aromatic aldehydes, catalysed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene was developed.
Collapse
Affiliation(s)
- J. Raunio
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - J. Mannoja
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - T. Nguyen
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. Ahmad
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. M. Kemppainen
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - R. G. Franzén
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - M. Kandhavelu
- Molecular Signalling Lab
- TUT-BMT Unit
- Tampere University of Technology
- 33101 Tampere
- Finland
| | - N. R. Candeias
- Laboratory of Chemistry and Bioengineering
- Tampere University of Technology
- 33101 Tampere
- Finland
| |
Collapse
|
14
|
Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep 2016; 6:23748. [PMID: 27049649 PMCID: PMC4822156 DOI: 10.1038/srep23748] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/08/2016] [Indexed: 02/01/2023] Open
Abstract
The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme.
Collapse
Affiliation(s)
- Dipali Patel
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Fiona Fitzpatrick
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ
| |
Collapse
|