1
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Yang Q, Bloino J. Scaling-up VPT2: A feasible route to include anharmonic correction on large molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123969. [PMID: 38330757 DOI: 10.1016/j.saa.2024.123969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy.
| |
Collapse
|
2
|
Wu T, Bouř P, Fujisawa T, Unno M. Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305521. [PMID: 37985561 PMCID: PMC10767399 DOI: 10.1002/advs.202305521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Indexed: 11/22/2023]
Abstract
Raman optical activity (ROA) is commonly measured with green light (532 nm) excitation. At this wavelength, however, Raman scattering of europium complexes is masked by circularly polarized luminescence (CPL). This can be avoided using near-infrared (near-IR, 785 nm) laser excitation, as demonstrated here by Raman and ROA spectra of three chiral europium complexes derived from camphor. Since luminescence is strongly suppressed, many vibrational bands can be detected. They carry a wealth of structural information about the ligand and the metal core, and can be interpreted based on density functional theory (DFT) simulations of the spectra. For example, jointly with ROA experimental data, the simulations make it possible to determine absolute configuration of chiral lanthanide compounds in solution.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 2Prague166 10Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 2Prague166 10Czech Republic
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied ChemistryFaculty of Science and EngineeringSaga UniversitySaga840‐8502Japan
| | - Masashi Unno
- Department of Chemistry and Applied ChemistryFaculty of Science and EngineeringSaga UniversitySaga840‐8502Japan
| |
Collapse
|
3
|
Das M, Gangopadhyay D, Hudecová J, Kessler J, Kapitán J, Bouř P. Monitoring Conformation and Protonation States of Glutathione by Raman Optical Activity and Molecular Dynamics. Chempluschem 2023; 88:e202300219. [PMID: 37283530 DOI: 10.1002/cplu.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) is a common antioxidant and its biological activity depends on the conformation and protonation state. We used molecular dynamics, Raman and Raman optical activity (ROA) spectroscopies to investigate GSH structural changes in a broad pH range. Factor analysis of the spectra provided protonation constants (2.05, 3.45, 8.62, 9.41) in good agreement with previously published values. Following the analysis, spectra of differently protonated forms were obtained by extrapolation. The complete deprotonation of the thiol group above pH 11 was clearly visible in the spectra; however, many spectral features did not change much with pH. Experimental spectra at various pH values were decomposed into the simulated ones, which allowed us to study the conformer populations and quality of molecular dynamics (MD). According to this combined ROA/MD analysis conformation of the GSH backbone is affected by the pH changes only in a limited way. The combination of ROA with the computations thus has the potential to improve the MD force field and obtain more accurate populations of the conformer species. The methodology can be used for any molecule, but for a more detailed insight better computational techniques are needed in the future.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jana Hudecová
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
- Department of Analytical Chemistry Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
4
|
Fortino M, Schifino G, Pietropaolo A. Simulation workflows to predict the circular dichroism and circularly polarized luminescence of chiral materials. Chirality 2023; 35:673-680. [PMID: 36896846 DOI: 10.1002/chir.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Chiral materials are attracting considerable interest in various fields in view of their unique properties and optical activity. Indeed, the peculiar features of chiral materials to absorb and emit circularly polarized light enable their use in an extensive range of applications. Motivated by the interest in boosting the development of chiral materials characterized by enhanced chiroptical properties such as circular dichroism (CD) and circular polarized luminescence (CPL), we herein illustrate in this tutorial how theoretical simulations can be used for the predictions and interpretations of chiroptical data and for the identification of chiral geometries. We are focusing on computational frameworks that can be used to investigate the theoretical aspects of chiral materials' photophysical and conformational characteristics. We will then illustrate ab initio methods based on density functional theory (DFT) and its time-dependent extension (TD-DFT) to simulate CD and CPL signals, and we will exemplify a variety of enhanced sampling techniques useful for an adequate sampling of the configurational space for chiral systems.
Collapse
Affiliation(s)
- Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Gioacchino Schifino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Ohya M, Kikukawa T, Matsuo J, Tsukamoto T, Nagaura R, Fujisawa T, Unno M. Structure and Heterogeneity of Retinal Chromophore in Chloride Pump Rhodopsins Revealed by Raman Optical Activity. J Phys Chem B 2023. [PMID: 37201188 DOI: 10.1021/acs.jpcb.3c01801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chloride transport by microbial rhodopsins is actively being researched to understand how light energy is converted to drive ion pumping across cell membranes. Chloride pumps have been identified in archaea and eubacteria, and there are similarities and differences in the active site structures between these groups. Thus, it has not been clarified whether a common mechanism underlies the ion pump processes for all chloride-pumping rhodopsins. Here, we applied Raman optical activity (ROA) spectroscopy to two chloride pumps, Nonlabens marinus rhodopsin-3 (NM-R3) and halorhodopsin from the cyanobacterium Mastigocladopsis repens (MrHR). ROA is a vibrational spectroscopy that provides chiral sensitivity, and the sign of ROA signals can reveal twisting of cofactor molecules within proteins. Our ROA analysis revealed that the retinal Schiff base NH group orients toward the C helix and forms a direct hydrogen bond with a nearby chloride ion in NM-R3. In contrast, MrHR is suggested to contain two retinal conformations twisted in opposite directions; one conformation has a hydrogen bond with a chloride ion like NM-R3, while the other forms a hydrogen bond with a water molecule anchored by a G helix residue. These results suggest a general pump mechanism in which the chloride ion is "dragged" by the flipping Schiff base NH group upon photoisomerization.
Collapse
Affiliation(s)
- Masaiku Ohya
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junpei Matsuo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryota Nagaura
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
6
|
Vala D, Mičica M, Cvejn D, Postava K. Broadband Mueller ellipsometer as an all-in-one tool for spectral and temporal analysis of mutarotation kinetics. RSC Adv 2023; 13:6582-6592. [PMID: 36860536 PMCID: PMC9969180 DOI: 10.1039/d3ra00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
Spectroscopic Mueller matrix ellipsometry is becoming increasingly routine across physical branches of science, even outside optics. The highly sensitive tracking of the polarization-related physical properties offers a reliable and non-destructive analysis of virtually any sample at hand. If coupled with a physical model, it is impeccable in performance and irreplaceable in versatility. Nonetheless, this method is rarely adopted interdisciplinarily, and when it is, it often plays a supporting role, which does not take benefit of its full potential. To bridge this gap, we present Mueller matrix ellipsometry in the context of chiroptical spectroscopy. In this work, we utilize a commercial broadband Mueller ellipsometer to analyze the optical activity of a saccharides solution. We verify the correctness of the method in the first place by studying the well-known rotatory power of glucose, fructose, and sucrose. By employing a physically meaningful dispersion model, we obtain 2π-unwrapped absolute specific rotations. Besides that, we demonstrate the capability of tracing the glucose mutarotation kinetics from just one set of measurements. Coupling the Mueller matrix ellipsometry with the proposed dispersion model ultimately leads to the precisely determined mutarotation rate constants and spectrally and temporally resolved gyration tensor of individual glucose anomers. In this view, Mueller matrix ellipsometry may stand as an offbeat yet equal technique to those considered classical chiroptical spectroscopy techniques, which may help open new opportunities for broader polarimetric applications in biomedicine and chemistry.
Collapse
Affiliation(s)
- Daniel Vala
- IT4Innovations, National Supercomputing Center, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
- Faculty of Materials Science and Technology, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
| | - Martin Mičica
- IT4Innovations, National Supercomputing Center, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
- Laboratoire de Physique de l'École Normale Supérieure, CNRS UMR 8023 24 rue Lhomond 75005 Paris France
| | - Daniel Cvejn
- ENET Centre, CEET, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
| | - Kamil Postava
- IT4Innovations, National Supercomputing Center, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
- Faculty of Materials Science and Technology, VSB - Technical University of Ostrava 17. listopadu 2172/15 708 00 Ostrava-Poruba Czech Republic
| |
Collapse
|
7
|
Mattiat J, Luber S. Comparison of Length, Velocity, and Symmetric Gauges for the Calculation of Absorption and Electric Circular Dichroism Spectra with Real-Time Time-Dependent Density Functional Theory. J Chem Theory Comput 2022; 18:5513-5526. [PMID: 36041170 DOI: 10.1021/acs.jctc.2c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A velocity and symmetric gauge implementation for real-time time-dependent density functional theory (RT-TDDFT) in the CP2K package using a Gaussian and plane wave approach is presented, including the explicit gauge-transformed contributions due to the nonlocal part of pseudopotentials. Absorption spectra of gas-phase α-pinene are calculated in length and velocity gauges in the long-wavelength approximation for the application of a δ pulse in linear and full order. The velocity gauge implementation is also applied to a solvated uracil molecule to showcase its use within periodic boundary conditions (PBC). For the calculation of the expectation value of the electric dipole moment in PBC, both the velocity representation and the modern theory of polarization give equivalent absorption spectra if a distributed reference point is used for the nonlocal term of the velocity operator. The discussion of linear response theory takes place in a unified framework in terms of linear response functions in propagator notation, distinguishing the parts of the linear response functions associated with perturbation and response. To further investigate gauge dependence, electric circular dichroism (ECD) spectra of α-pinene were calculated either as magnetic response to an electric field perturbation, in length or velocity gauge, or as electric response to a magnetic field perturbation in the symmetric gauge. Both approaches, electric and magnetic perturbations, have been found to yield equivalent ECD spectra.
Collapse
Affiliation(s)
- Johann Mattiat
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
8
|
Wu T. A Raman optical activity spectrometer can sensitively detect lanthanide circularly polarized luminescence. Phys Chem Chem Phys 2022; 24:15672-15686. [PMID: 35735101 DOI: 10.1039/d2cp01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, many studies have appeared in which the Raman optical activity (ROA) instrument was found to be convenient for measuring circularly polarized luminescence (CPL). Typically, weak lanthanide luminescence including circular polarization could be detected. The new detection scheme is referred to as ROA-CPL spectroscopy. It is particularly useful when also the vibrational (ROA) itself is detectable as the molecule structure can be examined more reliably. In this review, development of this chiroptical approach and its applications in structural studies of biomolecules are summarized.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic.
| |
Collapse
|
9
|
Guo YT, Xiao YH, Zhang JG, Bian SD, Zhou JZ, Wu DY, Tian ZQ. Inspecting the structural characteristics of chiral drug penicillamine under different pH conditions using Raman optical activity spectroscopy and DFT calculations. Phys Chem Chem Phys 2021; 23:22119-22132. [PMID: 34580687 DOI: 10.1039/d1cp02219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the structural characteristics of chiral drugs in physiological environments is a challenging research topic, which may lead to a better understanding of how the drugs work. Raman optical activity (ROA) spectroscopy in combination with density functional theory (DFT) calculations was exploited to inspect the structural changes in penicillamine under different acid-base states in aqueous solutions. The B3LYP/aug-cc-PVDZ method was employed and the implicit solvation model density (SMD) was considered for describing the solvation effect in H2O. The conformations of penicillamine varied with pH, but penicillamine was liable to stabilize in the form of the PC conformation (the sulfur atom is in a trans orientation with respect to carboxylate) in most cases for both D- and L-isomers. The relationship between the conformations of penicillamine and the ROA peaks, as well as peak assignments, were comprehensively studied and elucidated. In the fingerprint region, two ROA couplets and one ROA triplet with different patterns were recognized. The intensity, sign and frequency of the corresponding peaks also changed with varying pH. Deuteration was carried out to identify the vibrational modes, and the ROA peaks of the deuterated amino group in particular are sensitive to change in the ambient environment. The results are expected not only to serve as a reference for the interpretation of the ROA spectra of penicillamine and other chiral drugs with analogous structures but also to evaluate the structural changes of chiral molecules in physiological environments, which will form the basis of further exploration of the effects of structural characteristics on the pharmacological and toxicological properties of chiral drugs.
Collapse
Affiliation(s)
- Yu-Ting Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Ji-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Si-Da Bian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
10
|
Das M, Gangopadhyay D, Šebestík J, Habartová L, Michal P, Kapitán J, Bouř P. Chiral detection by induced surface-enhanced Raman optical activity. Chem Commun (Camb) 2021; 57:6388-6391. [PMID: 34085068 DOI: 10.1039/d1cc01504d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combination of optical activity with surface-enhanced Raman scattering has been a dream of physical chemists for a long time. We report a measurement protocol based on silver colloids and aromatic linkers where chiral acids could be detected in concentrations of about 10-5 M. We explain the mechanism by binding and self-assembly of the linkers into chiral aggregates on the silver surface. Following the "sergeants-and-soldiers" principle, the chirality is determined by the relatively minor acidic component. Such detection of biologically relevant molecules may be useful when other methods, such as electronic circular dichroism, are not sensitive enough. In the future, variations of the chemical structure of the linker or other conditions are needed to provide a more specific signal allowing one to better discriminate among the optically active molecules.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic. and Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic.
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic.
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Pavel Michal
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, Olomouc, 77146, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, Olomouc, 77146, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic. and Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| |
Collapse
|
11
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Demissie TB, Sundar MS, Thangavel K, Andrushchenko V, Bedekar AV, Bouř P. Origins of Optical Activity in an Oxo-Helicene: Experimental and Computational Studies. ACS OMEGA 2021; 6:2420-2428. [PMID: 33521480 PMCID: PMC7841950 DOI: 10.1021/acsomega.0c06079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
Helicenes are known to provide extremely strong optical activity. Prediction of the properties of helicenes may facilitate their design and synthesis for analytical or materials sciences. On a model 7,12,17-trioxa[11]helicene molecule, experimental results from multiple spectroscopic techniques are analyzed on the basis of density functional theory (DFT) simulations to test computational methodology and analyze the origins of chirality. Infrared (IR), vibrational circular dichroism (VCD), electronic circular dichroism (ECD), magnetic circular dichroism (MCD), and Raman optical activity (ROA, computations only) spectra are compared. Large dissymmetry factors are predicted both for vibrational (ROA/Raman ∼ VCD/IR ∼ 10-3) and electronic (ECD/Abs ∼10-2) optical activity, which could be verified experimentally except for ROA. Largest VCD signals come from a strong vibrational coupling of the C-H in-plane and out-of-plane bending modes in stacked helicene rings. The sum-over-states (SOS) approach appeared convenient for simulation of MCD spectra. Our results demonstrated that selected computational methods can be successfully used for reliable modeling of spectral and chiroptical properties of large helicenes. In particular, they can be used for guiding rational design of strongly chiral chromophores.
Collapse
Affiliation(s)
- Taye B. Demissie
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
- Materials
Science Program, Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa 1176, Ethiopia
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag
UB 00704 Gaborone, Botswana
| | - M. Shyam Sundar
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Karthick Thangavel
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
- Department
of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613 401 Tamil Nadu, India
| | - Valery Andrushchenko
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Ashutosh V. Bedekar
- Department
of Chemistry, Faculty of Science, The Maharaja
Sayajirao University of Baroda, Vadodara 390 002, India
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
13
|
Matsuo J, Kikukawa T, Fujisawa T, Hoff WD, Unno M. "Watching" a Molecular Twist in a Protein by Raman Optical Activity. J Phys Chem Lett 2020; 11:8579-8584. [PMID: 32945678 DOI: 10.1021/acs.jpclett.0c02448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light-absorbing chromophores in photoreceptors contain a π-electron system and are intrinsically planar molecules. However, within a protein environment these cofactors often become nonplanar and chiral in a manner that is widely believed to be functionally important. When the same chromophore is out-of-plane distorted in opposite directions in different members of a protein family, such conformers become a set of enantiomers. In techniques using chiral optical spectroscopy such as Raman optical activity (ROA), such proteins are expected to show opposite signs in their spectra. Here we use two microbial rhodopsins, Gloeobacter rhodopsin and sodium ion pump rhodopsin (NaR), to provide the first experimental and theoretical evidence that the twist direction of the retinal chromophore indeed determines the sign of the ROA spectrum. We disrupt the hydrogen bond responsible for the distortion of the retinal in NaR and show that the sign of the ROA signals of this nonfunctional mutant is flipped. The reported ROA spectra are monosignate, a property that has been seen for a variety of photoreceptors, which we attribute to an energetically favorable gradual curvature of the chromophore.
Collapse
Affiliation(s)
- Junpei Matsuo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
14
|
Ranc V, Chaloupková Z. Chiral discrimination of amino acids using phosphorene assisted graphene-enhanced Raman spectroscopy. Anal Chim Acta 2020; 1129:69-75. [PMID: 32891392 DOI: 10.1016/j.aca.2020.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/27/2020] [Indexed: 11/18/2022]
Abstract
Discrimination of enantiomers poses a scientific challenge as the chemical and physical properties of enantiomers are nearly identical. The chiral analysis is usually performed by separation techniques, including chromatography, electrophoresis, or optical instrumentation based on an interaction of the analyzed sample with a polarized beam of light. Here we present a novel method for a chiral screening based on a combination of the black phosphorus@Graphene nanocomposite and Raman spectroscopy. The nanocomposite allows to enhance the Raman signal with factors higher than 100 asymmetrically and provide altered signals for mixtures containing varying enantiomeric ratios of target compounds. Tryptophan, Phenylalanine, DOPA, Isoleucine, and Leucine were selected as model compounds; the method allows us to discriminate between mixtures with 10, 25, 50, 75, and 100% enantiomeric purity.
Collapse
Affiliation(s)
- Václav Ranc
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic.
| | - Zuzana Chaloupková
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| |
Collapse
|
15
|
Brakestad A, Jensen SR, Wind P, D'Alessandro M, Genovese L, Hopmann KH, Frediani L. Static Polarizabilities at the Basis Set Limit: A Benchmark of 124 Species. J Chem Theory Comput 2020; 16:4874-4882. [PMID: 32544327 PMCID: PMC7467643 DOI: 10.1021/acs.jctc.0c00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Benchmarking molecular properties
with Gaussian-type orbital (GTO)
basis sets can be challenging, because one has to assume that the
computed property is at the complete basis set (CBS) limit, without
a robust measure of the error. Multiwavelet (MW) bases can be systematically
improved with a controllable error, which eliminates the need for
such assumptions. In this work, we have used MWs within Kohn–Sham
density functional theory to compute static polarizabilities for a
set of 92 closed-shell and 32 open-shell species. The results are
compared to recent benchmark calculations employing the GTO-type aug-pc4
basis set. We observe discrepancies between GTO and MW results for
several species, with open-shell systems showing the largest deviations.
Based on linear response calculations, we show that these discrepancies
originate from artifacts caused by the field strength and that several
polarizabilies from a previous study were contaminated by higher order
responses (hyperpolarizabilities). Based on our MW benchmark results,
we can affirm that aug-pc4 is able to provide results close to the
CBS limit, as long as finite difference effects can be controlled.
However, we suggest that a better approach is to use MWs, which are
able to yield precise finite difference polarizabilities even with
small field strengths.
Collapse
Affiliation(s)
- Anders Brakestad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stig Rune Jensen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Peter Wind
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Marco D'Alessandro
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133 Roma, Italia
| | - Luigi Genovese
- Laboratoire de Simulation Atomistique, Université Grenoble Alpes, CEA, INAC-MEM, 38000 Grenoble, France
| | - Kathrin Helen Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
16
|
Saito F, Schreiner PR. Determination of the Absolute Configurations of Chiral Alkanes – An Analysis of the Available Tools. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fumito Saito
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| |
Collapse
|
17
|
Saito F, Gerbig D, Becker J, Schreiner PR. Absolute Configuration of trans-Perhydroazulene. Org Lett 2020; 22:3895-3899. [DOI: 10.1021/acs.orglett.0c01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumito Saito
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dennis Gerbig
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
18
|
Hope M, Šebestík J, Kapitán J, Bouř P. Understanding CH-Stretching Raman Optical Activity in Ala–Ala Dipeptides. J Phys Chem A 2020; 124:674-683. [DOI: 10.1021/acs.jpca.9b10557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marius Hope
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
- Norwegian University of Science and Technology NO-7491 Trondheim, Norway
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
19
|
Polavarapu PL, Santoro E. Vibrational optical activity for structural characterization of natural products. Nat Prod Rep 2020; 37:1661-1699. [DOI: 10.1039/d0np00025f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy.
Collapse
|
20
|
Rullich CC, Kiefer J. Chemometric analysis of enantioselective Raman spectroscopy data enables enantiomeric ratio determination. Analyst 2019; 144:5368-5372. [PMID: 31414107 DOI: 10.1039/c9an01205b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-line determination of the enantiomeric ratio is still a challenge in process analytical technology (PAT). This study combines enantioselective Raman (esR) spectroscopy with partial least-squares regression (PLSR) to determine the enantiomeric fraction of the chiral molecule (5,6)-diphenyl-morpholin-2-one diluted in dimethyl sulfoxide (DMSO) as a proof-of-concept. Morpholinone derivates are potential candidates for pharmaceutical applications. The PLS weights were carefully analyzed in order to avoid misleading regression results, e.g. caused by sample impurities. A suitable PLSR model was found with two components and it was validated by a leave-one-out cross-validation. The enantiomeric fraction ef(+) could be calculated with deviations from the prepared ef(+) in the range of -0.031 and +0.052 from the esR spectra recorded at a half-wave retarder angle of 30.0°.
Collapse
Affiliation(s)
- Claudia C Rullich
- Technische Thermodynamik, Universität Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany.
| | - Johannes Kiefer
- Technische Thermodynamik, Universität Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany. and MAPEX Center for Materials and Processes, Universität Bremen, Bibliothekstr. 1, 28359 Bremen, Germany
| |
Collapse
|
21
|
De Gussem E, Tehrani KA, Herrebout WA, Bultinck P, Johannessen C. Comparative Study of the Vibrational Optical Activity Techniques in Structure Elucidation: The Case of Galantamine. ACS OMEGA 2019; 4:14133-14139. [PMID: 31497733 PMCID: PMC6714543 DOI: 10.1021/acsomega.9b02108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
The absolute configuration of the alkaloid galantamine was studied using a range of solution-state techniques; nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD), and Raman optical activity (ROA). While the combined use of NMR and VCD does provide a fast, high-resolution methodology for determining the absolute configuration of galantamine, both techniques were needed in concert to achieve this goal. ROA, on the other hand, proved to be sensitive enough to assign the full absolute configuration without relying on other techniques. In both cases, statistical validation was applied to aid the determination of absolute configuration. In the case of galantamine, ROA combined with statistical validation is shown to be a powerful stand-alone tool for absolute configuration determination.
Collapse
Affiliation(s)
- Ewoud De Gussem
- Ghent
Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan
281 (S3), 9000 Ghent, Belgium
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | - Wouter A. Herrebout
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Patrick Bultinck
- Ghent
Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan
281 (S3), 9000 Ghent, Belgium
| | - Christian Johannessen
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
22
|
Molinski TF, Salib MN, Pearce AN, Copp BR. The Configuration of Distaminolyne A is S: Quantitative Evaluation of Exciton Coupling Circular Dichroism of N, O- Bis-arenoyl-1-amino-2-alkanols. JOURNAL OF NATURAL PRODUCTS 2019; 82:1183-1189. [PMID: 30958674 DOI: 10.1021/acs.jnatprod.8b00937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The 2 S configuration of the marine natural product distaminolyne A was recently disputed based upon total synthesis, yet paradoxically supported by a second independent total synthesis from a different research group. We now verify the 2 S configuration of distaminolyne A by extensive chiroptical studies and support the veracity of the EC ECD method originally used to prove it. The origin of the apparent paradox appears to lie in the limits of precision of polarimetry in the context of weakly rotatory molecules, which strikes a cautionary note on the reliability of "reassignment" of natural product configurations based solely on specific rotation.
Collapse
Affiliation(s)
| | | | - A Norrie Pearce
- School of Chemical Sciences , University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| | - Brent R Copp
- School of Chemical Sciences , University of Auckland , Private Bag 92019, Auckland 1142 , New Zealand
| |
Collapse
|
23
|
Begzjav TK, Zhang Z, Scully MO, Agarwal GS. Enhanced signals from chiral molecules via molecular coherence. OPTICS EXPRESS 2019; 27:13965-13977. [PMID: 31163853 DOI: 10.1364/oe.27.013965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
One of the most widely used chiroptical spectroscopic methods for studying chiral molecules is Raman optical activity; however, the chiral Raman optical activity signal is extremely weak. Here, we theoretically examine enhanced chiral signals in a system with strongly prepared molecular coherence. We show that the enhanced chiral signal due to strong molecular coherence is up to four orders of magnitude higher than that of the spontaneous Raman optical activity. We discuss several advantages of studying the heterodyned signal obtained by combining the anti-Stokes signal with a local oscillator. The heterodyning allows direct measurement of the ratio of the chiral and achiral parameters. Taking advantage of the molecular coherence and heterodyne detection, the coherent anti-Stokes Raman scattering technique opens up a new potential application for investigation of biomolecular chirality.
Collapse
|
24
|
Forbes KA. Raman Optical Activity Using Twisted Photons. PHYSICAL REVIEW LETTERS 2019; 122:103201. [PMID: 30932650 DOI: 10.1103/physrevlett.122.103201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Raman optical activity underpins a powerful vibrational spectroscopic technique for obtaining detailed structural information about chiral molecular species. The effect centers on the discriminatory interplay between the handedness of material chirality with that of circularly polarized light. Twisted light possessing an optical orbital angular momentum carries helical phase fronts that screw either clockwise or anticlockwise and, thus, possess a handedness that is completely distinct from the polarization. Here a novel form of Raman optical activity that is sensitive to the handedness of the incident twisted photons through a spin-orbit interaction of light is identified, representing a new chiroptical spectroscopic technique.
Collapse
Affiliation(s)
- Kayn A Forbes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
25
|
Rullich CC, Kiefer J. Principal component analysis to enhance enantioselective Raman spectroscopy. Analyst 2019; 144:2080-2086. [PMID: 30734784 DOI: 10.1039/c8an01886c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enantioselective Raman (esR) spectroscopy is an innovative technique with a high potential for online process monitoring in chiral media, e.g. in the pharmaceutical industry. A prerequisite for an effective application is to combine the experimental approach with suitable concepts for data analysis. In this work, we present a chemometric approach to analyze the esR spectra recorded in an automatized polarization-resolved Raman set-up. It is demonstrated that the proposed method is capable of distinguishing between the enantiomers of the chiral alcohol 4-methylpentan-2-ol in a fully unsupervised fashion. Furthermore, it is shown that the difficulty of facing only small intensity differences between the esR spectra of the enantiomers can be overcome by feeding difference spectra between the pure enantiomers and the racemate into the principal component analysis (PCA) algorithm. The enantiomers are clearly discriminable along the first principal component.
Collapse
Affiliation(s)
- Claudia C Rullich
- Technische Thermodynamik, Universität Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany
| | | |
Collapse
|
26
|
Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Proc Natl Acad Sci U S A 2018; 115:8671-8675. [PMID: 30104345 DOI: 10.1073/pnas.1806491115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photoactive yellow protein (PYP), from the phototrophic bacterium Halorhodospira halophila, is a small water-soluble photoreceptor protein and contains p-coumaric acid (pCA) as a chromophore. PYP has been an attractive model for studying the physical chemistry of protein active sites. Here, we explore how Raman optical activity (ROA) can be used to extract quantitative information on distortions of the pCA chromophore at the active site in PYP. We use 13C8-pCA to assign an intense signal at 826 cm-1 in the ROA spectrum of PYP to a hydrogen out-of-plane vibration of the ethylenic moiety of the chromophore. Quantum-chemical calculations based on density functional theory demonstrate that the sign of this ROA band reports the direction of the distortion in the dihedral angle about the ethylenic C=C bond, while its amplitude is proportional to the dihedral angle. These results document the ability of ROA to quantify structural deformations of a cofactor molecule embedded in a protein moiety.
Collapse
|
27
|
Jones OAH. Illuminating the dark metabolome to advance the molecular characterisation of biological systems. Metabolomics 2018; 14:101. [PMID: 30830382 DOI: 10.1007/s11306-018-1396-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/07/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The latest version of the Human Metabolome Database (v4.0) lists 114,100 individual entries. Typically, however, metabolomics studies identify only around 100 compounds and many features identified in mass spectra are listed only as 'unknown compounds'. The lack of ability to detect all metabolites present, and fully identify all metabolites detected (the dark metabolome) means that, despite the great contribution of metabolomics to a range of areas in the last decade, a significant amount of useful information from publically funded studies is being lost or unused each year. This loss of data limits our potential gain in knowledge and understanding of important research areas such as cell biology, environmental pollution, plant science, food chemistry and health and biomedical research. Metabolomics therefore needs to develop new tools and methods for metabolite identification to advance as a field. AIM OF REVIEW In this critical review, some potential issues with metabolite identification are identified and discussed. New and novel emerging technologies and tools which may contribute to expanding the number of compounds identified in metabolomics studies (thus illuminating the dark metabolome) are reviewed. The aim is to stimulate debate and research in the molecular characterisation of biological systems to drive forward metabolomic research. KEY SCIENTIFIC CONCEPTS OF REVIEW The work specifically discusses dynamic nuclear polarisation nuclear magnetic resonance spectroscopy (DNP-NMR), non-proton NMR active nuclei, two-dimensional liquid chromatography (2DLC) and Raman spectroscopy (RS). It is suggested that developing new methods for metabolomics with these techniques could lead to advances in the field and better characterisation of biological systems.
Collapse
Affiliation(s)
- Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
28
|
Rullich CC, Kiefer J. Enantioselective Raman spectroscopy (esR) for distinguishing between the enantiomers of 2-butanol. Analyst 2018; 143:3040-3048. [PMID: 29878000 DOI: 10.1039/c8an00705e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The first experimental application of enantioselective Raman spectroscopy (esR) is demonstrated using the example of the chiral alcohol 2-butanol. Samples of the neat enantiomers and the racemic mixture were analyzed in a self-built Raman set-up. The Raman spectrum allows the discrimination of the chemical species. It is shown that the optical rotation of a Raman peak with a small depolarization ratio can be measured. In addition, without any sample modification, e.g. chiral solvent, the enantiomers are distinguishable at a suitable half-wave retarder angle detecting only the vertically polarized component of the Raman signal.
Collapse
Affiliation(s)
- Claudia C Rullich
- University of Bremen, Technische Thermodynamik, Badgasteiner Str. 1, 28359 Bremen, Germany
| | - Johannes Kiefer
- University of Bremen, Technische Thermodynamik, Badgasteiner Str. 1, 28359 Bremen, Germany and University of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany.
| |
Collapse
|
29
|
Perera AS, Cheramy J, Merten C, Thomas J, Xu Y. IR, Raman, and Vibrational Optical Activity Spectra of Methyl Glycidate in Chloroform and Water: The Clusters-in-a-liquid
Solvation Model. Chemphyschem 2018; 19:2234-2242. [DOI: 10.1002/cphc.201800309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Joseph Cheramy
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada T6G 2G2
| | - Christian Merten
- Ruhr-University Bochum; Faculty of Chemistry and Biochemistry; 44801 Bochum Germany
| | - Javix Thomas
- Department of Chemical and Material Engineering; University of Alberta; Edmonton Alberta Canada T6G 1H
| | - Yunjie Xu
- Department of Chemistry; University of Alberta; Edmonton Alberta Canada T6G 2G2
| |
Collapse
|
30
|
Furuta M, Fujisawa T, Urago H, Eguchi T, Shingae T, Takahashi S, Blanch EW, Unno M. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation. Phys Chem Chem Phys 2018; 19:2078-2086. [PMID: 28045149 DOI: 10.1039/c6cp07828a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poly(l-proline) II (PPII) helix is considered to be a major conformation in disordered polypeptides and unfolded proteins in aqueous solution. The PPII conformation can be identified by using Raman optical activity (ROA), which measures the different intensities of right- and left-circularly polarized Raman scattered light from chiral molecules and provides information on stereochemistry associated with vibrational motions. In the present study, we used tetra-alanine (Ala4) as a model system, since its central amide bond adopts the PPII conformation. The predominance of the PPII conformation was supported by 11 ns molecular dynamics (MD) simulations at 300 K. The MD snapshots were used for subsequent quantum mechanical/molecular mechanical (QM/MM) calculations to compute the Raman and ROA spectra. The present MD + QM/MM analysis leads to a good agreement between the observed and simulated spectra, allowing us to assign most of the spectral features including the ROA band near 1320 cm-1, which has been used as a marker for the PPII conformation. This positive ROA band has three components. The lower frequency component near 1310 cm-1 arises from an internal peptide bond, whereas the higher frequency components around 1320-1335 cm-1 appear due to N- and C-terminal peptide groups. The MD + QM/MM calculations also reproduced the electronic circular dichroism spectra of Ala4. The present results provide a satisfactory framework for future investigations of unfolded/disordered proteins as well as peptides in solutions by chiral spectroscopic methods.
Collapse
Affiliation(s)
- Masakazu Furuta
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Hiroyasu Urago
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahiro Eguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Ewan W Blanch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
31
|
Jungwirth J, Šebestík J, Šafařík M, Kapitán J, Bouř P. Quantitative Determination of Ala-Ala Conformer Ratios in Solution by Decomposition of Raman Optical Activity Spectra. J Phys Chem B 2017; 121:8956-8964. [DOI: 10.1021/acs.jpcb.7b07154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakub Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Martin Šafařík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| | - Josef Kapitán
- Department
of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
32
|
Zhang Y, Wang P, Jia G, Cheng F, Feng Z, Li C. A Short-Wavelength Raman Optical Activity Spectrometer with Laser Source at 457 nm for the Characterization of Chiral Molecules. APPLIED SPECTROSCOPY 2017; 71:2211-2217. [PMID: 28574281 DOI: 10.1177/0003702817712260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing a high-sensitivity Raman optical activity (ROA) spectrometer has been regarded as one of the great challenges in chiral science and technology. Herein, we report our recent progress on the development of a short-wavelength ROA (sw-ROA) spectrometer with the excitation line at 457 nm, which shows obviously improved signal-to-noise (S/N) ratio compared with the currently available 532 nm ROA spectrometer. This could be ascribed to the fifth-power of frequency dependence for ROA intensity together with the potential advantage of avoiding fluorescence for most molecules. The required laser power at the sample for being able to obtain a reliable ROA spectrum is less than 150 milliwatts (mW) for most samples. In the case of neat S-α-pinene sample, the ROA signal can be acquired with the laser power at sample as low as 5 mW with the total exposure time of 5 min. The concentration of S-α-pinene sample can be reduced to 10% (v/v) by diluting with ethanol. These results demonstrate the great potential of sw-ROA (457 nm) working with decreased laser power, shortened acquisition time, and lower sample concentration. The applicability of sw-ROA (457 nm) has also been demonstrated by measuring representative chiral samples, including carbohydrates, amino acids, protein in aqueous solution, and chiral organic molecule in organic solvents.
Collapse
Affiliation(s)
- Ying Zhang
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- 2 University of Chinese Academy of Sciences, Beijing, China
| | - Guoqing Jia
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Feng Cheng
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhaochi Feng
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Can Li
- 1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
33
|
Baiardi A, Stein CJ, Barone V, Reiher M. Vibrational Density Matrix Renormalization Group. J Chem Theory Comput 2017; 13:3764-3777. [DOI: 10.1021/acs.jctc.7b00329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto Baiardi
- Scuola Normale
Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Christopher J. Stein
- Laboratorium
für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vincenzo Barone
- Scuola Normale
Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Markus Reiher
- Laboratorium
für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Srebro-Hooper M, Autschbach J. Calculating Natural Optical Activity of Molecules from First Principles. Annu Rev Phys Chem 2017; 68:399-420. [DOI: 10.1146/annurev-physchem-052516-044827] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
35
|
Profant V, Jegorov A, Bouř P, Baumruk V. Absolute Configuration Determination of a Taxol Precursor Based on Raman Optical Activity Spectra. J Phys Chem B 2017; 121:1544-1551. [DOI: 10.1021/acs.jpcb.6b12318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Václav Profant
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Alexandr Jegorov
- Teva Czech Industries s.r.o., Branišovská
31, 370 05 České
Budějovice, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo
n. 2, 166 10 Prague
6, Czech Republic
| | - Vladimír Baumruk
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
36
|
Oulevey P, Luber S, Varnholt B, Bürgi T. Symmetriebruch in chiralen ionischen Flüssigkeiten: Nachweis durch vibratorisch-optische Aktivität. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patric Oulevey
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Genf Schweiz
| | - Sandra Luber
- Institut für Chemie; Universität Zürich; Winterthurerstrasse 190 8057 Zürich Schweiz
| | - Birte Varnholt
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Genf Schweiz
| | - Thomas Bürgi
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Genf Schweiz
| |
Collapse
|
37
|
Oulevey P, Luber S, Varnholt B, Bürgi T. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity. Angew Chem Int Ed Engl 2016; 55:11787-90. [DOI: 10.1002/anie.201605792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Patric Oulevey
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Geneva Switzerland
| | - Sandra Luber
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Birte Varnholt
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Geneva Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 1211 Geneva Switzerland
| |
Collapse
|
38
|
Melcrová A, Kessler J, Bouř P, Kaminský J. Simulation of Raman optical activity of multi-component monosaccharide samples. Phys Chem Chem Phys 2016; 18:2130-42. [DOI: 10.1039/c5cp04111b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determination of the saccharide structure in solution is a laborious process that can be significantly enhanced by chiral optical spectroscopies.
Collapse
Affiliation(s)
- Adéla Melcrová
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
- J. Heyrovský Institute of Physical Chemistry
- 182 23 Prague
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| |
Collapse
|
39
|
Bloino J, Biczysko M, Barone V. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism, and Raman Optical Activity. J Phys Chem A 2015; 119:11862-74. [PMID: 26580121 PMCID: PMC5612400 DOI: 10.1021/acs.jpca.5b10067] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this paper is 2-fold. First, we want to report the extension of our virtual multifrequency spectrometer (VMS) to anharmonic intensities for Raman optical activity (ROA) with the full inclusion of first- and second-order resonances for both frequencies and intensities in the framework of the generalized second-order vibrational perturbation theory (GVPT2) for all kinds of vibrational spectroscopies. Then, from a more general point of view, we want to present and validate the performance of VMS for the parallel analysis of different vibrational spectra for medium-sized molecules (IR, Raman, VCD, ROA) including both mechanical and electric/magnetic anharmonicity. For the well-known methyloxirane benchmark, careful selection of density functional, basis set, and resonance thresholds permitted us to reach qualitative and quantitative agreement between experimental and computed band positions and shapes. Next, the whole series of halogenated azetidinones is analyzed, showing that it is now possible to interpret different spectra in terms of mass, electronegativity, polarizability, and hindrance variation between closely related substituents, chiral spectroscopies being particular effective in this connection.
Collapse
Affiliation(s)
- Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei
Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G.
Moruzzi 1, I-56124 Pisa, Italy
| | - Malgorzata Biczysko
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei
Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G.
Moruzzi 1, I-56124 Pisa, Italy
- International Center of Quantum and Molecular Structures,
College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444
China
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa,
Italy
| |
Collapse
|
40
|
Gąsior-Głogowska M, Malek K, Zajac G, Baranska M. A new insight into the interaction of cisplatin with DNA: ROA spectroscopic studies on the therapeutic effect of the drug. Analyst 2015; 141:291-6. [PMID: 26596762 DOI: 10.1039/c5an02140e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity (ROA) spectroscopy has been applied for the first time to study the interaction of cisplatin with DNA. The knowledge about the structure of DNA-metal ion cross-links and hence the mechanism of the drug action is fundamental for the development of new antitumor drugs. At the same time, there is an urgent need to search for new methods for monitoring of this effect at the therapeutic dose of a drug. We have demonstrated that ROA spectroscopy is a sensitive technique with the capability to follow the structural alteration of the whole DNA molecule upon drug binding via a direct observation of transformation undergoing within chiral sugar moieties. A ROA profile delivers clear evidence of a partial transition from the B-DNA to the A-form due to the formation of cisplatin-DNA cross-links.
Collapse
Affiliation(s)
- M Gąsior-Głogowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, 30-348, Poland
| | | | | | | |
Collapse
|
41
|
Tatarkovič M, Miškovičová M, Šťovíčková L, Synytsya A, Petruželka L, Setnička V. The potential of chiroptical and vibrational spectroscopy of blood plasma for the discrimination between colon cancer patients and the control group. Analyst 2015; 140:2287-93. [PMID: 25723848 DOI: 10.1039/c4an01880j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer is one of the most abundant causes of cancer deaths in the world. At an early stage, the established clinical procedures have low reliability and sensitivity. Therefore, we tested a novel approach based on chiroptical methods such as electronic circular dichroism (ECD) and Raman optical activity (ROA). These methods are suitable for detecting slight changes in the 3D structure of chiral biomolecules, some of which may be caused by pathological processes occurring during cancer growth. Fifty-five blood plasma samples were analyzed using the combination of ECD and ROA supplemented by conventional Raman and FT-IR spectroscopy. All obtained spectra were evaluated together by linear discriminant analysis. The accuracy of sample discrimination reached 100% and the subsequent leave-one-out cross-validation resulted in 93% sensitivity and 81% specificity. The achieved results indicate that chiroptical methods supplemented by Raman and FT-IR spectroscopy might be new supporting and minimally invasive tools in the clinical diagnosis of colon cancer.
Collapse
Affiliation(s)
- Michal Tatarkovič
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
42
|
Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shojiro Haraguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| |
Collapse
|
43
|
Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Sato H, Yajima T, Yamagishi A. Chiroptical Studies on Supramolecular Chirality of Molecular Aggregates. Chirality 2015; 27:659-66. [DOI: 10.1002/chir.22482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Hisako Sato
- Graduated of Science and Engineering; Ehime University; Matsuyama Japan
| | - Tomoko Yajima
- Department of Chemistry; Ochanomizu University; Tokyo Japan
| | | |
Collapse
|
45
|
Wu T, Hudecová J, You XZ, Urbanová M, Bouř P. Comparison of the Electronic and Vibrational Optical Activity of a Europium(III) Complex. Chemistry 2015; 21:5807-13. [DOI: 10.1002/chem.201406266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 11/09/2022]
|
46
|
Abstract
Analytical methods for quantitative enantioselective measurements are highly desirable in the life sciences. A Raman spectroscopy approach for the determination of concentration and enantiomer ratio is proposed.
Collapse
Affiliation(s)
- J. Kiefer
- Technische Thermodynamik
- Universität Bremen
- 28359 Bremen
- Germany
- School of Engineering
| |
Collapse
|
47
|
Górecki M. A configurational and conformational study of (−)-Oseltamivir using a multi-chiroptical approach. Org Biomol Chem 2015; 13:2999-3010. [DOI: 10.1039/c4ob02369b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four chiroptical methods, i.e. electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) were employed to discover a set of the most probable conformations of (−)-Oseltamivir in solution.
Collapse
Affiliation(s)
- Marcin Górecki
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|