1
|
Reddy GR, Sravani B, Jung N, Dillip GR, Joo SW. Engineering Rich-Cation Vacancies in CuCo 2O 4 Hollow Spheres with a Large Surface Area Derived from a Template-Free Approach for Ultrahigh Capacity and High-Energy Density Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37485849 DOI: 10.1021/acsami.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Intriguing cationic defects with hollow nano-/microstructures are a critical challenge but a potential strategy to discover electrochemical energy conversion and storage devices with improved electrochemical performances. Herein, we successfully produced a highly porous, and large surface area of self-templated CuCo2O4 hollow spheres (CCOHSs) with cationic defects via a solvothermal route. We hypothesized that the inside-out Ostwald ripening mechanism of the template-free strategy was the framework for forming the CCOHSs. Cationic defects (Cu) within the CCOHSs were identified by employing various analytical techniques, including energy-dispersive X-ray spectroscopy analysis of both scanning and transmission electron microscopy, X-ray photon spectroscopy, and inductively coupled plasma-atomic emission spectroscopy. The resulting CCOHSs had significant properties, such as a high specific surface area of 98.32 m2 g-1, rich porosity, and battery-type electrode behavior in supercapacitor applications. Notably, the CCOHSs demonstrated an outstanding specific capacity of 1003.7 C g-1 at 1 A g-1, with excellent structural integrity and cycle stability. Moreover, the fabricated asymmetric CCOHS//activated carbon device exhibited a high energy density of 65.2 Wh kg-1 at a power density of 777.8 W kg-1.
Collapse
Affiliation(s)
| | - Bathinapatla Sravani
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Gowra Raghupathy Dillip
- Energy Institute, Centre of Rajiv Gandhi Institute of Petroleum Technology, Bengaluru, 560064, India
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
2
|
Jiang J, Nie G, Nie P, Li Z, Pan Z, Kou Z, Dou H, Zhang X, Wang J. Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. NANO-MICRO LETTERS 2020; 12:183. [PMID: 34138206 PMCID: PMC7770795 DOI: 10.1007/s40820-020-00521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
Among the various morphologies of carbon-based materials, hollow carbon nanostructures are of particular interest for energy storage. They have been widely investigated as electrode materials in different types of rechargeable batteries, owing to their high surface areas in association with the high surface-to-volume ratios, controllable pores and pore size distribution, high electrical conductivity, and excellent chemical and mechanical stability, which are beneficial for providing active sites, accelerating electrons/ions transfer, interacting with electrolytes, and giving rise to high specific capacity, rate capability, cycling ability, and overall electrochemical performance. In this overview, we look into the ongoing progresses that are being made with the nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers, in relation to their applications in the main types of rechargeable batteries. The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and lithium-sulfur batteries are comprehensively reviewed and discussed, together with the challenges being faced and perspectives for them.
Collapse
Affiliation(s)
- Jiangmin Jiang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Guangdi Nie
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ping Nie
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Chemistry, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
| |
Collapse
|
3
|
Yuan W, Liu J, Yi W, Liang L, Zhu Y, Chen X. Boron and nitrogen co-doped double-layered mesopore-rich hollow carbon microspheres as high-performance electrodes for supercapacitors. J Colloid Interface Sci 2020; 573:232-240. [DOI: 10.1016/j.jcis.2020.03.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
4
|
Wang J, Cui Y, Wang D. Design of Hollow Nanostructures for Energy Storage, Conversion and Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801993. [PMID: 30238544 DOI: 10.1002/adma.201801993] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/13/2018] [Indexed: 05/20/2023]
Abstract
Hollow nanostructures have shown great promise for energy storage, conversion, and production technologies. Significant efforts have been devoted to the design and synthesis of hollow nanostructures with diverse compositional and geometric characteristics in the past decade. However, the correlation between their structure and energy-related performance has not been reviewed thoroughly in the literature. Here, some representative examples of designing hollow nanostructure to effectively solve the problems of energy-related technologies are highlighted, such as lithium-ion batteries, lithium-metal anodes, lithium-sulfur batteries, supercapacitors, dye-sensitized solar cells, electrocatalysis, and photoelectrochemical cells. The great effect of structure engineering on the performance is discussed in depth, which will benefit the better design of hollow nanostructures to fulfill the requirements of specific applications and simultaneously enrich the diversity of the hollow nanostructure family. Finally, future directions of hollow nanostructure design to solve emerging challenges and further improve the performance of energy-related technologies are also provided.
Collapse
Affiliation(s)
- Jiangyan Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Centre for Clean Environment and Energy, Gold Coast Campus Griffith University, Queensland, 4222, Australia
| |
Collapse
|
5
|
Mao D, Wan J, Wang J, Wang D. Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802874. [PMID: 30303577 DOI: 10.1002/adma.201802874] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Thanks to their distinguished properties such as optimized specific surface area, low density, high loading capacity, and sequential matter transfer and storage, hollow multishelled structures (HoMSs) have attracted great interest from scientists in broad fields, including catalysis, drug delivery, solar cells, supercapacitors, lithium-ion batteries, electromagnetic wave absorption, and sensors. However, traditional synthesis methods such as soft-templating and hierarchical self-assembly methods can hardly realize the controllable synthesis of HoMSs, thus limiting their development and application. Here, the development process of HoMSs is first succinctly reviewed and the shortcomings of the traditional synthesis method are concluded. Subsequently, the sequential templating approach, which shows great generality for the synthesis of HoMSs with controllable composition and geometry configuration and exhibits remarkable effect on the scientific research field, is introduced. The basic material science and chemical reaction mechanism involved in the synthesis and manipulation of HoMSs using the sequential templating approach are then explained in detail. In addition, the effect of the geometric characteristics of HoMSs on their application properties is highlighted. Finally, the current challenges and future research directions of HoMSs are also suggested.
Collapse
Affiliation(s)
- Dan Mao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Jiangyan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, China
| |
Collapse
|
6
|
Ren H, Yu R. Hollow multi-shelled structures for energy conversion and storage applications. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00634f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials with hollow multi-shelled structures composed of various compositions are promising candidates for energy conversion and storage applications.
Collapse
Affiliation(s)
- Hao Ren
- School of Metallurgical and Ecological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- School of Materials Science and Engineering
| | - Ranbo Yu
- School of Metallurgical and Ecological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
7
|
Xu M, Yu Q, Liu Z, Lv J, Lian S, Hu B, Mai L, Zhou L. Tailoring porous carbon spheres for supercapacitors. NANOSCALE 2018; 10:21604-21616. [PMID: 30457149 DOI: 10.1039/c8nr07560c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The last decade has witnessed significant breakthroughs in the synthesis of porous carbon spheres (PCSs). This Review provides an updated summarization on the controlled synthesis of PCSs for supercapacitors. The synthetic methodologies can be generally categorized into (i) hard templating, (ii) soft templating, (iii) the modified Stöber method, (iv) hydrothermal carbonization (HTC), and (v) aerosol-assisted methods. The obtained PCSs include microporous/mesoporous/macroporous carbon spheres, single-/multi-shelled hollow carbon spheres, and yolk@shell carbon spheres. The structure-electrochemical performance correlation is discussed. Finally, the future research directions on the rational design of PCSs for supercapacitors are predicted.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Qiang Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhenhui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Jianshuai Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Sitian Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
8
|
Xiao M, Meng Y, Duan C, Zhu F, Zhang Y. Nitrogen doped porous onion carbon derived from ionic liquids as the anode materials for lithium ion batteries with high performance. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L. Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602914. [PMID: 28169464 DOI: 10.1002/adma.201602914] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Intricate hollow structures garner tremendous interest due to their aesthetic beauty, unique structural features, fascinating physicochemical properties, and widespread applications. Here, the recent advances in the controlled synthesis are discussed, as well as applications of intricate hollow structures with regard to energy storage and conversion. The synthetic strategies toward complex multishelled hollow structures are classified into six categories, including well-established hard- and soft-templating methods, as well as newly emerging approaches based on selective etching of "soft@hard" particles, Ostwald ripening, ion exchange, and thermally induced mass relocation. Strategies for constructing structures beyond multishelled hollow structures, such as bubble-within-bubble, tube-in-tube, and wire-in-tube structures, are also covered. Niche applications of intricate hollow structures in lithium-ion batteries, Li-S batteries, supercapacitors, Li-O2 batteries, dye-sensitized solar cells, photocatalysis, and fuel cells are discussed in detail. Some perspectives on the future research and development of intricate hollow structures are also provided.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Zechao Zhuang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Huihui Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Mengting Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Dongyuan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| |
Collapse
|
10
|
Abstract
A family of Pocket Cubes with different chemical compositions but with the same overall mesoscale microstructures was prepared for potential applications in energy storage and water treatment.
Collapse
Affiliation(s)
- Minahi S. Aldossary
- Department of Chemical Engineering and Materials Science
- Wayne State University
- Detroit
- USA
| | - Jian Zhu
- Department of Chemical Engineering and Materials Science
- Wayne State University
- Detroit
- USA
| | | | - Da Deng
- Department of Chemical Engineering and Materials Science
- Wayne State University
- Detroit
- USA
| |
Collapse
|
11
|
Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Self EC, McRen EC, Pintauro PN. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning. CHEMSUSCHEM 2016; 9:208-215. [PMID: 26749072 DOI: 10.1002/cssc.201501393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Electrospun nanofiber mats containing carbon nanoparticles in a poly(vinylidene fluoride) binder were prepared and characterized as Li-ion battery anodes. The mats exhibited an initial capacity of 161 mAh g(-1) with 91.7% capacity retention after 510 cycles at 0.1 C (1 C=372 mA gcarbon (-1)). Whereas many nanoscale electrodes are limited to low areal and/or volumetric capacities, the particle/polymer nanofiber anodes can be made thick with a high fiber volume fraction while maintaining good rate capabilities. Thus, a nanofiber anode with a fiber volume fraction of 0.79 exhibits a volumetric capacity of 55 mAh cm(-3) at 2 C, which is twice that of a typical graphite anode. Similarly, thick nanofiber mats with a high areal capacity of 4.3 mAh cm(-2) were prepared and characterized. The excellent performance of electrospun anodes is attributed to electrolyte intrusion throughout the interfiber void space and efficient Li(+) transport between the electrolyte and carbon nanoparticles in the radial fiber direction.
Collapse
Affiliation(s)
- Ethan C Self
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Emily C McRen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Peter N Pintauro
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|