1
|
Yang A, Zhang H, Hu C, Wang X, Shen R, Kou X, Wang H. Novel coumarin derivatives as multifunctional anti-AD agents: Design, synthesis, X-ray crystal structure and biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Chang CJ, Lee W, Liou YC, Chang YL, Lai YC, Ding S, Chen HY, Chen HY, Chang YC. Synergy Effect of Aluminum Complexes During the Ring-Opening Polymerization of ε-Caprolactone: Inductive Effects Between Dinuclear Metal Catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
4
|
Xie SS, Liu J, Tang C, Pang C, Li Q, Qin Y, Nong X, Zhang Z, Guo J, Cheng M, Tang W, Liang N, Jiang N. Design, synthesis and biological evaluation of rasagiline-clorgyline hybrids as novel dual inhibitors of monoamine oxidase-B and amyloid-β aggregation against Alzheimer’s disease. Eur J Med Chem 2020; 202:112475. [DOI: 10.1016/j.ejmech.2020.112475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
|
5
|
El-Sayed NF, El-Hussieny M, Ewies EF, Fouad MA, Boulos LS. New phosphazine and phosphazide derivatives as multifunctional ligands targeting acetylcholinesterase and β-Amyloid aggregation for treatment of Alzheimer's disease. Bioorg Chem 2019; 95:103499. [PMID: 31838287 DOI: 10.1016/j.bioorg.2019.103499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
Phosphazine and phosphazide derivatives are described herein as a new class of selective and potent acetylcholinesterase (AChE) inhibitors and β-amyloid aggregation inhibitors. Phosphazines (5-7) were synthesized smoothly via a redox-condensation reaction of 1,2-bis(diphenylphosphino)ethane with different amines derivatives in the presence of dialkyl azodicarboxylate (Staudinger reaction) while phosphazides (8) via electrophilic attack of azido derivatives. Structures of the synthesized compounds were justified on the basis of compatible elementary and spectroscopic analyses. All the compounds were evaluated for their acetylcholinesterase inhibitory activity. The most three potent compounds (5b-c and 8b) showing AChE IC50 values (29.85-34.96 nM) comparable to that of donepezil (34.42 nM) were subjected to further investigation by testing their butyrylcholinesterase, MMP-2 and self-induced Aβ aggregation inhibition activity. Especially, the coumarin phosphazide derivative (8b) presented the best AChE inhibition selectivity index (IC50 = 34.96 nM, AChE/BuChE; 3.81) together with good inhibition ability against MMP-2 (IC50 = 441.33 nM) and self-induced Aβ1-42 aggregation (IC50 = 337.77 nM). In addition, the inhibition of metal-induced Aβ aggregation by 8b was confirmed by thioflavine T fluorescence. The most potent effect of 8b was observed on the Zn2+-induced Aβ42 aggregation. Kinetic study of compound 8b suggested it to be a competitive AChE inhibitor. Also, it specifically chelates metal and is predicted to be permeable to BBB. It also possesses low toxicity on SH-SY5Y neuroblastoma cells with a safety index of 15.37. In addition, it was demonstrated that compound 8b can improve the cognitive impairment of scopolamine-induced model in mice with % alternations and transfer latency time comparable to that of donepezil. Also, a docking study was carried out and it was in accordance with the in vitro results. These promising in vitro and in vivo findings highlight compound 8b as a possible drug candidate in searching for new multifunctional AD drugs.
Collapse
Affiliation(s)
- Naglaa F El-Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, P.O. 12622, Giza, Egypt
| | - Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, P.O. 12622, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, P.O. 12622, Giza, Egypt.
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| | - Leila S Boulos
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
6
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
7
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Jiang N, Huang Q, Liu J, Liang N, Li Q, Li Q, Xie SS. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 146:287-298. [DOI: 10.1016/j.ejmech.2018.01.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
|
9
|
Li F, Wu JJ, Wang J, Yang XL, Cai P, Liu QH, Kong LY, Wang XB. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer's disease. Bioorg Med Chem 2017; 25:3815-3826. [PMID: 28549891 DOI: 10.1016/j.bmc.2017.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
In a continuing effort to develop multitargeted compounds as potential treatment agents against Alzheimer's disease (AD), a series of chromone derivatives were designed, synthesized and evaluated. In vitro assay indicated that most of the target compounds have both MAOs inhibition activities, antioxidant activity and biometal chelating ability. Especially, compound s19 exhibits good inhibitory potency for inhibition of MAOs (IC50 value of 5.12μM for hMAO-A and 0.816μM for hMAO-B), moderate inhibition of Aβ aggregation (75.1% at 20μM), metal chelation, control of ROS generation and antioxidant activity (ORAC=3.62). In addition, s19 could reduce PC12 cells death induced by oxidative stress and penetrate the blood-brain barrier (BBB). Taken together, these results suggested that s19 might be a promising multitargeted compound for AD treatment.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jia-Jia Wu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xue-Lian Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Pei Cai
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Qiao-Hong Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
10
|
Li Y, Qiang X, Luo L, Yang X, Xiao G, Liu Q, Ai J, Tan Z, Deng Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer's disease. Eur J Med Chem 2016; 126:762-775. [PMID: 27951485 DOI: 10.1016/j.ejmech.2016.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/08/2023]
Abstract
A series of aurone Mannich base derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors with good multifunctional properties. Among them, compound 7d exhibited outstanding inhibitory activity for RatAChE, EeAChE and HuAChE (IC50 = 0.00878 ± 0.0002 μM, 0.0212 ± 0.006 μM and 0.0371 ± 0.004 μM, respectively). Moreover, 7d displayed high antioxidant activity and could confer significant neuroprotective effect against H2O2-induced PC-12 cell injury. In addition, 7d also showed biometal chelating abilities, good self- and Cu2+-induced Aβ1-42 aggregation inhibitory potency and high BBB permeability. These multifunctional properties highlight 7d as promising candidate for further studies directed to the development of novel drugs against AD.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaoming Qiang
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xia Yang
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ganyuan Xiao
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Jiachen Ai
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Guan L, Hao Y, Chen L, Wei ML, Jiang Q, Liu WY, Zhang YB, Zhang J, Feng F, Qu W. Synthesis and evaluation of neuroprotective 4-O-substituted chrysotoxine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. RSC Adv 2016. [DOI: 10.1039/c5ra21313d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of 4-O-substituted chrysotoxine (CTX) derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Li Guan
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yanfeng Hao
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lei Chen
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Meng-Lin Wei
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qin Jiang
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yan-Bo Zhang
- School of Chinese Medicine
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Feng Feng
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wei Qu
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
12
|
Wang ZM, Xie SS, Li XM, Wu JJ, Wang XB, Kong LY. Multifunctional 3-Schiff base-4-hydroxycoumarin derivatives with monoamine oxidase inhibition, anti-β-amyloid aggregation, metal chelation, antioxidant and neuroprotection properties against Alzheimer's disease. RSC Adv 2015. [DOI: 10.1039/c5ra13594j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These 3-Schiff base-4-hydroxycoumarin derivatives were multifunctional agents with monoamine oxidase inhibition, anti-β-amyloid aggregation, metal chelation, antioxidant and neuroprotection properties against Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi-Min Wang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Sai-Sai Xie
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xue-Mei Li
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jia-Jia Wu
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|