1
|
Sorour MI, Marcus AH, Matsika S. Modeling the Electronic Absorption Spectra of the Indocarbocyanine Cy3. Molecules 2022; 27:4062. [PMID: 35807308 PMCID: PMC9268038 DOI: 10.3390/molecules27134062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate modeling of optical spectra requires careful treatment of the molecular structures and vibronic, environmental, and thermal contributions. The accuracy of the computational methods used to simulate absorption spectra is limited by their ability to account for all the factors that affect the spectral shapes and energetics. The ensemble-based approaches are widely used to model the absorption spectra of molecules in the condensed-phase, and their performance is system dependent. The Franck-Condon approach is suitable for simulating high resolution spectra of rigid systems, and its accuracy is limited mainly by the harmonic approximation. In this work, the absorption spectrum of the widely used cyanine Cy3 is simulated using the ensemble approach via classical and quantum sampling, as well as, the Franck-Condon approach. The factors limiting the ensemble approaches, including the sampling and force field effects, are tested, while the vertical and adiabatic harmonic approximations of the Franck-Condon approach are also systematically examined. Our results show that all the vertical methods, including the ensemble approach, are not suitable to model the absorption spectrum of Cy3, and recommend the adiabatic methods as suitable approaches for the modeling of spectra with strong vibronic contributions. We find that the thermal effects, the low frequency modes, and the simultaneous vibrational excitations have prominent contributions to the Cy3 spectrum. The inclusion of the solvent stabilizes the energetics significantly, while its negligible effect on the spectral shapes aligns well with the experimental observations.
Collapse
Affiliation(s)
- Mohammed I. Sorour
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Andrew H. Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA;
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
2
|
Prlj A, Marsili E, Hutton L, Hollas D, Shchepanovska D, Glowacki DR, Slavíček P, Curchod BFE. Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. ACS EARTH & SPACE CHEMISTRY 2022; 6:207-217. [PMID: 35087992 PMCID: PMC8785186 DOI: 10.1021/acsearthspacechem.1c00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 05/30/2023]
Abstract
Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.
Collapse
Affiliation(s)
- Antonio Prlj
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Emanuele Marsili
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Lewis Hutton
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Daniel Hollas
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 16628, Czech Republic
| | - Darya Shchepanovska
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.
| | - David R. Glowacki
- ArtSci
International Foundation, 5th Floor Mariner House, Bristol BS1 4QD, U.K.
- CiTIUS
Intelligent Technologies Research Centre, Rúa de Jenaro de La Fuente, s/n, Santiago de Compostela 15705, A Coruña, Spain
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 16628, Czech Republic
| | | |
Collapse
|
3
|
Hele TJH, Monserrat B, Alvertis AM. Systematic improvement of molecular excited state calculations by inclusion of nuclear quantum motion: A mode-resolved picture and the effect of molecular size. J Chem Phys 2021; 154:244109. [PMID: 34241372 DOI: 10.1063/5.0052247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The energies of molecular excited states arise as solutions to the electronic Schrödinger equation and are often compared to experiment. At the same time, nuclear quantum motion is known to be important and to induce a redshift of excited state energies. However, it is thus far unclear whether incorporating nuclear quantum motion in molecular excited state calculations leads to a systematic improvement of their predictive accuracy, making further investigation necessary. Here, we present such an investigation by employing two first-principles methods for capturing the effect of quantum fluctuations on excited state energies, which we apply to the Thiel set of organic molecules. We show that accounting for zero-point motion leads to much improved agreement with experiment, compared to "static" calculations that only account for electronic effects, and the magnitude of the redshift can become as large as 1.36 eV. Moreover, we show that the effect of nuclear quantum motion on excited state energies largely depends on the molecular size, with smaller molecules exhibiting larger redshifts. Our methodology also makes it possible to analyze the contribution of individual vibrational normal modes to the redshift of excited state energies, and in several molecules, we identify a limited number of modes dominating this effect. Overall, our study provides a foundation for systematically quantifying the shift of excited state energies due to nuclear quantum motion and for understanding this effect at a microscopic level.
Collapse
Affiliation(s)
- Timothy J H Hele
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, United Kingdom
| | - Bartomeu Monserrat
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Antonios M Alvertis
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
4
|
Bai S, Mansour R, Stojanović L, Toldo JM, Barbatti M. On the origin of the shift between vertical excitation and band maximum in molecular photoabsorption. J Mol Model 2020; 26:107. [PMID: 32318882 PMCID: PMC7174274 DOI: 10.1007/s00894-020-04355-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022]
Abstract
The analysis of the photoabsorption spectra of molecules shows that the band maximum is usually redshifted in comparison to the vertical excitation. We conducted a throughout analysis of this shift based on low-dimensional analytical and numerical model systems, showing that its origin is rooted in the frequency change between the ground and the excited states in multidimensional systems. Moreover, we deliver a benchmark of ab initio results for the shift based on a comparison of vertical excitations and band maxima calculated with the nuclear ensemble approach for the 28 organic molecules in the Mülheim molecular dataset. The mean value of the shift calculated over 60 transitions is 0.11 ± 0.08 eV. The mean value of the band width is 0.32 ± 0.14 eV. . ![]()
Collapse
Affiliation(s)
- Shuming Bai
- Aix Marseille University, CNRS, ICR, Marseille, France. .,Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| | - Ritam Mansour
- Aix Marseille University, CNRS, ICR, Marseille, France
| | - Ljiljana Stojanović
- Aix Marseille University, CNRS, ICR, Marseille, France.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | |
Collapse
|
5
|
Gelfand N, Freidzon A, Vovna V. Theoretical insights into UV-Vis absorption spectra of difluoroboron β-diketonates with an extended π system: An analysis based on DFT and TD-DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:161-172. [PMID: 30897377 DOI: 10.1016/j.saa.2019.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
The UV-Vis absorption spectra of difluoroboron β-diketonates with aromatic substituents at the β-carbon are studied thoroughly using DFT and TD-DFT with the CAM-B3LYP functional. The complicated experimental spectra of these dyes can be correctly interpreted by considering their structural features. A closer look at the calculated data shows that the conformational flexibility of these compounds markedly influences their spectral shape. For the complexes with an extended π system, several conformers with significantly different absorption spectra are present in the equilibrium mixture in solution. Introducing a donor group alters the electronic structure of the complexes, so the charge distribution asymmetry in the molecules increases and the nature of the electronic transitions changes. Thus, both types of substituents, aromatic and donor ones, affect the spectral shape. Understanding their roles may help one to explain the absorption spectra of these and similar compounds and predict their response to analytes and other factors.
Collapse
Affiliation(s)
- Natalia Gelfand
- School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok 690091, Russia.
| | - Alexandra Freidzon
- Photochemistry Center of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409, Russia
| | - Vitaliy Vovna
- School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok 690091, Russia
| |
Collapse
|
6
|
García-Iriepa C, Zemmouche M, Ponce-Vargas M, Navizet I. The role of solvation models on the computed absorption and emission spectra: the case of fireflies oxyluciferin. Phys Chem Chem Phys 2019; 21:4613-4623. [DOI: 10.1039/c8cp07352j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Absorption and emission energies calculation covering both implicit and explicit solvation models using oxyluciferin as the case of study.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| | - Madjid Zemmouche
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| | - Miguel Ponce-Vargas
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| | - Isabelle Navizet
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Échelle
- MSME UMR 8208 CNRS
- UPEM
- 77454 Marne-la-Vallée
| |
Collapse
|
7
|
Guevara-Level P, Pascal S, Siri O, Jacquemin D. First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Phys Chem Chem Phys 2019; 21:22910-22918. [DOI: 10.1039/c9cp04835a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An in-depth investigation of the optical properties of recently-synthesized linear azaacene derivatives of various electronic nature (neutral, dicationic, and zwitterionic) is presented.
Collapse
Affiliation(s)
| | - Simon Pascal
- Aix Marseille Université
- CNRS UMR 7325
- CINAM
- Marseille 13288 Cedex 09
- France
| | - Olivier Siri
- Laboratoire CEISAM-UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Denis Jacquemin
- Laboratoire CEISAM-UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
8
|
Preiss J, Kage D, Hoffmann K, Martínez TJ, Resch-Genger U, Presselt M. Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. J Phys Chem A 2018; 122:9813-9820. [PMID: 30507127 DOI: 10.1021/acs.jpca.8b08886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fluorescence lifetime is a key property of fluorophores that can be utilized for microenvironment probing, analyte sensing, and multiplexing as well as barcoding applications. For the rational design of lifetime probes and barcodes, theoretical methods have been developed to enable the ab initio prediction of this parameter, which depends strongly on interactions with solvent molecules and other chemical species in the emitteŕs immediate environment. In this work, we investigate how a conductor-like screening model (COSMO) can account for variations in fluorescence lifetimes that are caused by such fluorophore-solvent interactions. Therefore, we calculate vibrationally broadened fluorescence spectra using the nuclear ensemble method to obtain distorted molecular geometries to sample the electronic transitions with time-dependent density functional theory (TDDFT). The influence of the solvent on fluorescence lifetimes is accounted for with COSMO. For example, for 4-hydroxythiazole fluorophore containing different heteroatoms and acidic and basic moieties in aprotic and protic solvents of varying polarity, this approach was compared to experimentally determined lifetimes in the same solvents. Our results demonstrate a good correlation between theoretically predicted and experimentally measured fluorescence lifetimes except for the polar solvents ethanol and acetonitrile that can specifically interact with the heteroatoms and the carboxylic acid of the thiazole derivative.
Collapse
Affiliation(s)
- Julia Preiss
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Strasse 9 , 07745 Jena , Germany
| | - Daniel Kage
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany.,Department of Physics , Humboldt-Universität zu Berlin , Newtonstrasse 15 , 12489 Berlin , Germany
| | - Katrin Hoffmann
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany
| | - Todd J Martínez
- SLAC National Accelerator Laboratory , Menlo Park , California 94309 , United States.,Department of Chemistry and PULSE Institute , Stanford University , Stanford , California 94305 , United States
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Strasse 11 , 12489 Berlin , Germany
| | - Martin Presselt
- Institute of Physical Chemistry , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology (IPHT) , Albert-Einstein-Strasse 9 , 07745 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany.,Sciclus GmbH & Co. KG, Moritz-von-Rohr-Strasse 1a , 07745 Jena , Germany
| |
Collapse
|
9
|
García-Iriepa C, Gosset P, Berraud-Pache R, Zemmouche M, Taupier G, Dorkenoo KD, Didier P, Léonard J, Ferré N, Navizet I. Simulation and Analysis of the Spectroscopic Properties of Oxyluciferin and Its Analogues in Water. J Chem Theory Comput 2018; 14:2117-2126. [DOI: 10.1021/acs.jctc.7b01240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cristina García-Iriepa
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Pauline Gosset
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, 67034 Strasbourg, France
| | - Romain Berraud-Pache
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Madjid Zemmouche
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Grégory Taupier
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Kokou Dodzi Dorkenoo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Pascal Didier
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, 67034 Strasbourg, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Isabelle Navizet
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
10
|
Li SL, Truhlar DG. Franck-Condon Models for Simulating the Band Shape of Electronic Absorption Spectra. J Chem Theory Comput 2017; 13:2823-2830. [PMID: 28489367 DOI: 10.1021/acs.jctc.7b00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Band shape is an essential ingredient in the simulation of electronic absorption spectra. The excitation of multiple series of vibrational levels during an electronic excitation is a main contributor to band shapes. Here we present two simple models based on the Franck-Condon displaced-harmonic-oscillator model. The models are both derived from the time-dependent formulation of electronic spectroscopy. They assume that the transition dipoles do not depend on geometry and that the potential energy surfaces are locally quadratic; one model is second order in time and is called LQ2, and the other is third order in time and is called LQ3. These models are suitable for simulating the unresolved vibronic band shapes of electronic spectra that involve many vibrational modes. The models are straightforward and can be easily applied to simulate absorption spectra that are composed of many electronic transitions. As compared to carrying out molecular dynamics simulations, they require relatively few electronic structure calculations, and the additional cost for constructing the spectra is negligible. Therefore, the models are suitable for simulating the spectra of complex systems such as transition-metal complexes.
Collapse
Affiliation(s)
- Shaohong L Li
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Predicting light absorption properties of anthocyanidins in solution: a multi-level computational approach. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1911-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Prlj A, Sandoval-Salinas ME, Casanova D, Jacquemin D, Corminboeuf C. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods. J Chem Theory Comput 2016; 12:2652-60. [PMID: 27144975 PMCID: PMC5119472 DOI: 10.1021/acs.jctc.6b00245] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The
description of low-lying ππ* states of linear acenes
by standard electronic structure methods is known to be challenging.
Here, we broaden the framework of this problem by considering a set
of fused heteroaromatic rings and demonstrate that standard electronic
structure methods do not provide a balanced description of the two
(typically) lowest singlet state (La and Lb)
excitations. While the Lb state is highly sensitive to
correlation effects, La suffers from the same drawbacks
as charge transfer excitations. We show that the comparison between
CIS/CIS(D) can serve as a diagnostic for detecting the two problematic
excited states. Standard TD-DFT and even its spin-flip variant lead
to inaccurate excitation energies and interstate gaps, with only a
double hybrid functional performing somewhat better. The complication
inherent to a balanced description of these states is so important
that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.
Collapse
Affiliation(s)
- Antonio Prlj
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - María Eugenia Sandoval-Salinas
- Kimika Fakultatea, Euskal Herriko Unibersitatea & Donostia International Physics Center, Paseo Manuel de Lardiazabal, 4, 20018 Donostia, Spain
| | - David Casanova
- Kimika Fakultatea, Euskal Herriko Unibersitatea & Donostia International Physics Center, Paseo Manuel de Lardiazabal, 4, 20018 Donostia, Spain.,IKERBASQUE - Basque Foundation for Science, 48013 Bilbao, Spain
| | - Denis Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6320, BP 92208, Université de Nantes , 2, Rue de la Houssinière, 44322 Nantes Cedex 3, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris Cedex 05, France
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Jacquemin D, Adamo C. Computational Molecular Electronic Spectroscopy with TD-DFT. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2015; 368:347-75. [DOI: 10.1007/128_2015_638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|