1
|
Gimła M, Herman-Antosiewicz A. Multifaceted Properties of Usnic Acid in Disrupting Cancer Hallmarks. Biomedicines 2024; 12:2199. [PMID: 39457512 PMCID: PMC11505503 DOI: 10.3390/biomedicines12102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer, a complex group of diseases marked by uncontrolled cell growth and invasive behavior, is characterized by distinct hallmarks acquired during tumor development. These hallmarks, first proposed by Douglas Hanahan and Robert Weinberg in 2000, provide a framework for understanding cancer's complexity. Targeting them is a key strategy in cancer therapy. It includes inhibiting abnormal signaling, reactivating growth suppressors, preventing invasion and metastasis, inhibiting angiogenesis, limiting replicative immortality, modulating the immune system, inducing apoptosis, addressing genome instability and regulating cellular energetics. Usnic acid (UA) is a natural compound found in lichens that has been explored as a cytotoxic agent against cancer cells of different origins. Although the exact mechanisms remain incompletely understood, UA presents a promising compound for therapeutic intervention. Understanding its impact on cancer hallmarks provides valuable insights into the potential of UA in developing targeted and multifaceted cancer therapies. This article explores UA activity in the context of disrupting hallmarks in cancer cells of different origins based on recent articles that emphasize the molecular mechanisms of this activity.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
2
|
Chen S, Ren Z, Guo L. Hepatotoxicity of usnic acid and underlying mechanisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-22. [PMID: 38904414 DOI: 10.1080/26896583.2024.2366737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Since usnic acid was first isolated in 1844 as a prominent secondary lichen metabolite, it has been used for various purposes worldwide. Usnic acid has been claimed to possess numerous therapeutic properties, including antimicrobial, anti-inflammatory, antiviral, anti-proliferative, and antipyretic activities. Approximately two decades ago, crude extracts of usnic acid or pure usnic acid were marketed in the United States as dietary supplements for aiding in weight loss as a "fat-burner" and gained popularity in the bodybuilding community; however, hepatotoxicity was documented for some usnic acid containing products. The US Food and Drug Administration (FDA) received numerous reports of liver toxicity associated with the use of dietary supplements containing usnic acid, leading the FDA to issue a warning letter in 2001 on a product, LipoKinetix. The FDA also sent a recommendation letter to the manufacturer of LipoKinetix, resulting in the withdrawal of LipoKinetix from the market. These events triggered investigations into the hepatotoxicity of usnic acid and its mechanisms. In 2008, we published a review article titled "Usnic Acid and Usnea Barbata Toxicity". This review is an updated version of our previous review article and incorporates additional data published since 2008. The purpose of this review is to provide a comprehensive summary of the understanding of the liver toxicity associated with usnic acid, with a particular focus on the current understanding of the putative mechanisms of usnic acid-related hepatotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Poulsen-Silva E, Gordillo-Fuenzalida F, Atala C, Moreno AA, Otero MC. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023; 13:805. [PMID: 37512512 PMCID: PMC10383681 DOI: 10.3390/metabo13070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Lichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.
Collapse
Affiliation(s)
- Erick Poulsen-Silva
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| |
Collapse
|
4
|
Valim FCF, Oliveira GP, Vasconcelos G, Paiva LB, Santillo C, Lavorgna M, Andrade RJE. Unraveling the impact of phase separation induced by thermal annealing on shape memory effect of polyester‐based thermoplastic polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.51723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fernanda Cabrera Flores Valim
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
- Laboratory of Chemical Processes and Particle Technology, Group for Bionanomanufacturing (BIONANO) Institute for Technological Research (IPT) São Paulo Brazil
| | - Gustavo Peixoto Oliveira
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
| | - Gibran Vasconcelos
- Lightweight Structures Laboratory (LEL) Institute for Technological Research (IPT) São Paulo Brazil
| | - Lucilene Betega Paiva
- Laboratory of Chemical Processes and Particle Technology, Group for Bionanomanufacturing (BIONANO) Institute for Technological Research (IPT) São Paulo Brazil
| | - Chiara Santillo
- Institute for Polymers, Composites and Biomaterials National Research Council of Italy Portici Italy
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials National Research Council of Italy Portici Italy
| | - Ricardo Jorge Espanhol Andrade
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
| |
Collapse
|
5
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
6
|
Özben RŞ, Cansaran-Duman D. The expression profiles of apoptosis-related genes induced usnic acid in SK-BR-3 breast cancer cell. Hum Exp Toxicol 2020; 39:1497-1506. [DOI: 10.1177/0960327120930257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aims to determine whether usnic acid (UA) could induce the expression of apoptosis-related genes in apoptosis pathway. The current study has enabled us to better understand the target of UA in the treatment of breast cancer. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Based on the previous study and the results of this study, UA had the most antiproliferative effect on SK-BR-3 breast cancer cell line. We examined differential expression of 88 apoptosis-related genes by quantitative real-time polymerase chain reaction using the apoptosis primary library panel in SK-BR-3 breast cancer cell. We observed a difference in the significant differential expression of 74 apoptosis-related genes in breast cancer after SK-BR-3 cells applied to UA (7.21 µM) for 48 h. The expression level of 56 of these 74 differentiated apoptosis-related genes increased ( p < 0.05), but the expression level of the other 18 related genes decreased ( p < 0.05). In order to evaluate the mechanism of apoptosis of UA, Western blot analysis was performed with Bcl-2, Bax, Caspase-3, and Caspase-9 antibodies. According to the Western blot analysis, we obtained similar results with gene-expression data. These results suggest that UA showed a cytotoxic effect in SK-BR-3 cells through activation of the mitochondrial apoptotic pathway. The obtained results from gene expression revealed that the effect of UA on apoptosis pathway is critical for clinical research.
Collapse
Affiliation(s)
- RŞ Özben
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
7
|
New complexes of usnate with lanthanides ions: La(III), Nd(III), Tb(III), Gd(III), synthesis, characterization, and investigation of cytotoxic properties in MCF-7 cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Anticancer Potential of Lichens' Secondary Metabolites. Biomolecules 2020; 10:biom10010087. [PMID: 31948092 PMCID: PMC7022966 DOI: 10.3390/biom10010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lichens produce different classes of phenolic compounds, including anthraquinones, xanthones, dibenzofuranes, depsides and depsidones. Many of them have revealed effective biological activities such as antioxidant, antiviral, antibiotics, antifungal, and anticancer. Although no clinical study has been conducted yet, there are number of in vitro and in vivo studies demonstrating anticancer effects of lichen metabolites. The main goal of our work was to review most recent published papers dealing with anticancer activities of secondary metabolites of lichens and point out to their perspective clinical use in cancer management.
Collapse
|
9
|
Kumar K, Mishra JPN, Singh RP. Usnic acid induces apoptosis in human gastric cancer cells through ROS generation and DNA damage and causes up-regulation of DNA-PKcs and γ-H2A.X phosphorylation. Chem Biol Interact 2019; 315:108898. [PMID: 31715134 DOI: 10.1016/j.cbi.2019.108898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Usnic acid, a dibenzofuran derivative found in many lichen species, is reported to have anticancer activity against human gastric cancer. We investigated the molecular alterations associated with anticancer effects of usnic acid against human gastric adenocarcinoma AGS and gastric carcinoma SNU-1 cells. Usnic acid (10-25 μM) treatment to these cells caused a significant increase in mitochondrial membrane depolarization and apoptotic cells. Apoptosis induction was accompanied by an increase in the ratio of Bax:Bcl-2 expression and cleaved-PARP. Usnic acid increased the comet tail length and tail DNA in alkaline comet assay indicating DNA double-strand breaks which was also evidenced by an increase in γH2A.X (Ser139) phosphorylation. The expression of DNA damage response proteins including DNA-PKcs, pATM (Ser1981), Chk-2 and p53 were increased. Further, N-acetyl cysteine, a known reactive oxygen species (ROS) scavenger, reversed the effects of usnic acid on expression of DNA damage response proteins and γH2A.X (Ser139) phosphorylation. This reversal was also observed in comet assay in a time and dose-dependent manner suggesting that usnic acid-induced DNA damage was caused by ROS. In addition, the non-toxic concentrations (1-10 μM) of usnic acid inhibited colony forming potential of AGS cells indicating its anti-proliferation activity. More importantly, the concentration of usnic acid that caused significant death in gastric cancer cells, did not show any considerable toxicity to normal human embryonic kidney HEK293 cells, human keratinocyte HaCaT cells and mouse primary gastric cells. Collectively, these results for the first time demonstrated the selective apoptotic effect of usnic acid (10-25 μM) through ROS generation and DNA damage on human gastric cancer cells accompanied with upregulation of γH2A.X (Ser139) phosphorylation, DNA-PKcs and p53.
Collapse
Affiliation(s)
- Kunal Kumar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Jai P N Mishra
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
10
|
Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids Surf B Biointerfaces 2019; 180:313-318. [DOI: 10.1016/j.colsurfb.2019.04.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
11
|
Wang S, Zang J, Huang M, Guan L, Xing K, Zhang J, Liu D, Zhao L. Discovery of novel (+)-Usnic acid derivatives as potential anti-leukemia agents with pan-Pim kinases inhibitory activity. Bioorg Chem 2019; 89:102971. [PMID: 31200288 DOI: 10.1016/j.bioorg.2019.102971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022]
Abstract
Usnic acid (UA) is the main secondary metabolite isolated from lichens, with moderate anticancer activity. A small group of (+)-UA derivatives characterized with flavanone moiety was designed and synthesized, and their anticancer activities were evaluated in leukemia cells. It was demonstrated that (+)-UA derivatives 6a-6g inhibited the proliferation of leukemia cells HL-60 and K562 with low micromolar IC50 values. Mechanisms of action were investigated to find that 6g induced apoptosis in HL-60 and K562 cell lines, and affected the expression of MNK/eIF4E axis-related proteins, such as Mcl-1, p-eIF4E, p-4E-BP1. Finally, kinase inhibition assay suggested 6g was a potential inhibitor of pan-Pim kinases. Meanwhile, the blocking of phosphorylation of BAD and 4E-BP1 by 6g, together with the proposed binding mode of 6g with Pim-1 further confirmed its Pim inhibition effects. Our finding provides the sight towards the potential mechanism of (+)-UA derivatives 6g as anti-leukemia agents.
Collapse
Affiliation(s)
- Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Zang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Guan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Nugraha AS, Wangchuk T, Willis AC, Haritakun R, Sujadmiko H, Keller PA. Phytochemical and Pharmacological Studies on Four Indonesian Epiphytic Medicinal Plants: Drynaria rigidula, Hydnophytum formicarum, Usnea misaminensis, and Calymperes schmidtii. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19856792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ari S. Nugraha
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Australia
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Indonesia
| | - Tashi Wangchuk
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Australia
| | - Anthony C. Willis
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Rachada Haritakun
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumanthani, Thailand
| | - Heri Sujadmiko
- Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Paul A. Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Australia
| |
Collapse
|
13
|
Guney Eskiler G, Eryilmaz IE, Yurdacan B, Egeli U, Cecener G, Tunca B. Synergistic effects of hormone therapy drugs and usnic acid on hormone receptor-positive breast and prostate cancer cells. J Biochem Mol Toxicol 2019; 33:e22338. [PMID: 30980508 DOI: 10.1002/jbt.22338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the combined effects of usnic acid (UA) and Tamoxifen (Tam) or Enzalutamide (Enz) on hormone receptor-positive breast and prostate cancer (BC and PC), respectively. The antiproliferative and apoptotic effects of Tam or Enz alone and in combination with UA on MCF7 and LNCaP cancer cells were detected. The results of the WST-1 assay indicated that UA was a promising anticancer compound that significantly enhanced the effectiveness of hormone therapy drugs compared with each drug alone (combination index < 1). In addition, the combination of UA with Tam or Enz remarkably induced more cell cycle arrest at the G0/G1 phase and apoptosis than only drug-treated cells (P < 0.01). Consequently, our findings suggest that the combination of UA with Tam or Enz may be a potential therapeutic approach for the treatment of BC and PC and further studies are required to exploit the potential mechanisms of synergistic effects.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Isil Ezgi Eryilmaz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Beste Yurdacan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Nguyen HGT, Nguyen VN, Kamounah FS, Hansen PE. Structure of a new usnic acid derivative from a deacylating Mannich reaction: NMR studies supported by theoretical calculations of chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1094-1100. [PMID: 29920769 DOI: 10.1002/mrc.4760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
In a conventional Mannich reaction using piperidine, hydroxypiperidines, morpholine, and N-methylpiperazine with usnic acid, a deacetylation was observed resulting in a substitution at C-2, a loss of an acetyl group, and a Mannich base with a stabilized enol. The enol has a hydrogen bond to the nitrogen of the secondary amine. The structure was investigated by nuclear magnetic resonance and deuterium isotope effects on 13 C chemical shifts as well as with density functional theory calculations to study the changed hydrogen bond pattern. It was found that the hydrogen bond involving the OH-9 group in chloroform forms a strong hydrogen bond than in usnic acid itself and that this hydrogen bond becomes even stronger in the more polar solvent, dimethylsulfoxide. Tautomerism was observed in the Mannich base as demonstrated by deuterium isotope effects on chemical shifts. The position of the tautomeric equilibrium depends on the solvent, and the position of the equilibrium governs the strength of the OH-9…O═C hydrogen bond.
Collapse
Affiliation(s)
| | | | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
15
|
Zheng X, Zhang F, Shao D, Zhang Z, Cui L, Zhang J, Dawulieti J, Meng Z, Zhang M, Chen L. Gram-scale production of carrier-free fluorescent berberine microrods for selective liver cancer therapy. Biofactors 2018; 44:496-502. [PMID: 30365229 DOI: 10.1002/biof.1450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Berberine, a widely used isoquinoline alkaloid in traditional Chinese medicine, has been proved to be a potential candidate in liver cancer therapy. However, the low therapeutic dose in the tumor target which is due to the poor solubility and oral bioavailability has limited its clinical application. In this study, fluorescent self-carried Berberine microrods (Ber-MRs) were prepared in gram-scale through a facile and cheap antisolvent precipitation method. Ber-MRs exhibited good optical properties, pH-responsive drug release behavior and selective and safe antitumor performance in vitro and in vivo without obvious toxicity. These findings have demonstrated that Ber-MRs are promising for efficient and safe liver cancer therapy. © 2018 BioFactors, 44(5):496-502, 2018.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan Shao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zhanqiang Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lianzhi Cui
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Laboratory, Jilin Cancer Hospital, Changchun, China
| | - Jing Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianati Dawulieti
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhaojie Meng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
16
|
Eryilmaz IE, Guney Eskiler G, Egeli U, Yurdacan B, Cecener G, Tunca B. In vitro cytotoxic and antiproliferative effects of usnic acid on hormone-dependent breast and prostate cancer cells. J Biochem Mol Toxicol 2018; 32:e22208. [PMID: 30101414 DOI: 10.1002/jbt.22208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 02/04/2023]
Abstract
The aim of the current study was first to investigate cytotoxic activity of usnic acid (UA) on hormone-dependent breast and prostate cancer, and normal cells. Cells were treated with increasing concentrations (25 to 150 µM) of UA for 48 hours and cell viability, quantitative and morphological analysis of cell death, and cell cycle analysis were performed. UA was shown to have selective cytotoxicity on hormone-dependent cancer cells with the IC50 levels of 71.4 and 77.5 µM for MCF7 and LNCaP cells, respectively. UA induced apoptotic cell death and G0/G1 cell cycle arrest without damaging normal cells. MCF7 cells were more sensitive to UA than LNCaP cells. Our results first revealed that UA is a promising candidate as an alternative agent for hormone-dependent breast and prostate cancers. However, molecular mechanism underlying the UA-mediated cell death in cancer cells should be investigated further.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gamze Guney Eskiler
- Medical Biology Department, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Beste Yurdacan
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
17
|
Yurdacan B, Egeli U, Eskiler GG, Eryilmaz IE, Cecener G, Tunca B. The role of usnic acid-induced apoptosis and autophagy in hepatocellular carcinoma. Hum Exp Toxicol 2018; 38:201-215. [DOI: 10.1177/0960327118792052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Usnic acid (UA) is a multifunctional bioactive lichen secondary metabolite with potential anti-cancer properties. Although the promising therapeutic effects of UA have been investigated in different cancer cell lines, the mechanism driving UA-induced cell death has yet to be elucidated. As the type of cell death (apoptosis or autophagy) induced by UA may vary depending on the cancer cell type, we first studied the cytotoxic effects of UA in HEPG2 (HBV(−)) and SNU-449(HBV(+)) hepatocellular carcinoma (HCC) cell lines. HCC cell viability was considerably reduced in a dose-dependent manner at 12, 24, and 48 h after treatment with UA ( p < 0.05). However, SNU-449 cells were more sensitive to UA than HEPG2 cells. UA also induced apoptotic cell death in HCC cells with cell cycle arrest at G0/G1 and G2/M phase depending on the genetic profile of each cell type. On the other hand, we observed acidic vesicular organelles in HCC cells after 36 h of UA treatment. Taken together, these findings suggest that UA stimulates apoptosis and autophagy in HEPG2 and SNU-449 cells without damaging normal control cells. Thus, UA might be a potential therapeutic compound for HCC treatment. However, there is a need for further studies investigating the death-promoting or preventing roles for autophagy and the molecular signaling mechanisms induced by UA treatment.
Collapse
Affiliation(s)
- B Yurdacan
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - U Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - G Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - IE Eryilmaz
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - G Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - B Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
18
|
Duan Z, Deng J, Dong Y, Zhu C, Li W, Fan D. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food Funct 2018; 8:3723-3736. [PMID: 28949353 DOI: 10.1039/c7fo00385d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ginsenoside Rk3 (Rk3) is present in the roots of processed Panax notoginseng herbs and it exerts anti-platelet aggregation, pro-immunogenic and cardioprotective effects. However, little is known regarding the anticancer activities of this compound, especially in lung cancer. This study was designed to investigate the anticancer effects of Rk3 on non-small cell lung cancer (NSCLC) cells and in an H460 xenograft tumor model. Our results showed that Rk3 reduced cell viability, inhibited both cell proliferation and colony formation, and induced G1 phase cell cycle arrest by downregulating the expression of cyclin D1 and CDK4 and upregulating the expression of P21. Rk3 also induced apoptosis in a concentration-dependent manner in H460 and A549 cells by Annexin V/PI staining, TUNEL assay and JC-1 staining, resulting in a change in the nuclear morphology. Moreover, Rk3 induced the activation of caspase-8, -9, and -3, promoted changes in mitochondrial membrane potential, decreased the expression of Bcl-2, increased the expression of Bax, and caused the release of cytochrome c, which indicated that the apoptosis-inducing effects of Rk3 were triggered via death receptor-mediated mitochondria-dependent pathways. Furthermore, Rk3 significantly inhibited the growth of H460 xenograft tumors without an obvious effect on the body weight of the treated mice. Histological analysis indicated that Rk3 inhibited tumor growth by altering the proliferation and morphology of tumor cells. In addition, we confirmed that Rk3 inhibited angiogenesis via CD34 staining and chick embryo chorioallantoic membrane (CAM) assay in vivo. Taken together, our findings revealed not only the anticancer effect of Rk3 on NSCLC cells but also a new promising therapeutic agent for human NSCLC.
Collapse
Affiliation(s)
- Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | |
Collapse
|
19
|
Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials 2018; 154:147-157. [DOI: 10.1016/j.biomaterials.2017.10.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/22/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
20
|
Ebrahim HY, Akl MR, Elsayed HE, Hill RA, El Sayed KA. Usnic Acid Benzylidene Analogues as Potent Mechanistic Target of Rapamycin Inhibitors for the Control of Breast Malignancies. JOURNAL OF NATURAL PRODUCTS 2017; 80:932-952. [PMID: 28245124 DOI: 10.1021/acs.jnatprod.6b00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
(+)-Usnic acid (1) is a common bioactive lichen-derived secondary metabolite with a characteristic dibenzofuran scaffold. It displayed low micromolar antiproliferative activity levels and, notably, induced autophagy in a panel of diverse breast cancer cell lines, suggesting the mechanistic (formerly "mammalian") target of rapamycin (mTOR) as a potential macromolecular target. The cellular autophagic markers were significantly upregulated due to the inhibition of mTOR downstream effectors. Additionally, 1 showed an optimal binding pose at the mTOR kinase pocket aided by multiple interactions to critical amino acids. Rationally designed benzylidene analogues of 1 displayed excellent fitting into a targeted deep hydrophobic pocket at the core of the kinase cleft, through stacking with the phenolic side chain of the Tyr2225 residue. Several potent analogues were generated, including 52, that exhibited potent (nM concentrations) antiproliferative, antimigratory, and anti-invasive activities against cells from multiple breast cancer clonal lines, without affecting the nontumorigenic MCF-10A mammary epithelial cells. Analogue 52 also exhibited potent mTOR inhibition and autophagy induction. Furthermore, 52 showed potent in vivo antitumor activity in two athymic nude mice breast cancer xenograft models. Collectively, usnic acid and analogues are potential lead mTOR inhibitors appropriate for future use to control breast malignancies.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71209, United States
| | - Mohamed R Akl
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71209, United States
| | - Heba E Elsayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71209, United States
| | - Ronald A Hill
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71209, United States
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71209, United States
| |
Collapse
|
21
|
DİNÇSOY AB, CANSARAN DUMAN D. Changes in apoptosis-related gene expression profiles in cancer cell lines exposed to usnic acid lichen secondary metabolite. Turk J Biol 2017. [DOI: 10.3906/biy-1609-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Senwar KR, Reddy TS, Thummuri D, Sharma P, Bharghava SK, Naidu V, Shankaraiah N. Design and synthesis of 4′-O-alkylamino-tethered-benzylideneindolin-2-ones as potent cytotoxic and apoptosis inducing agents. Bioorg Med Chem Lett 2016; 26:4061-9. [DOI: 10.1016/j.bmcl.2016.06.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
|
23
|
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:441-459. [PMID: 27064003 DOI: 10.1016/j.phymed.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. PURPOSE This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. CHAPTERS The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. CONCLUSION While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized, the knowledge of a large number of lichen substances with interesting structures is still limited to various in vitro assays with insufficient biological annotations, and this area still deserves more research in bioactivity, drug targets and screening. Attention should be paid on the accurate interpretation of their bioactivity for further applications avoiding over-interpretations from various in vitro bioassays.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
24
|
Zhang HR, Liu YC, Chen ZF, Meng T, Zou BQ, Liu YN, Liang H. Studies on the structures, cytotoxicity and apoptosis mechanism of 8-hydroxylquinoline rhodium(iii) complexes in T-24 cells. NEW J CHEM 2016. [DOI: 10.1039/c6nj00182c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two rhodium(iii) complexes showed good cytotoxicity. The underlying investigation of the apoptosis mechanism suggested that the mitochondrial apoptotic pathway was involved.
Collapse
Affiliation(s)
- Hai-Rong Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Hong Liang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
| |
Collapse
|
25
|
Prateeksha P, Paliya BS, Bajpai R, Jadaun V, Kumar J, Kumar S, Upreti DK, Singh BR, Nayaka S, Joshi Y, Singh BN. The genus Usnea: a potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv 2016. [DOI: 10.1039/c5ra24205c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genusUsneaAdans. (Parmeliaceae; lichenized Ascomycetes) is a typical group of mostly pale grayish-green fruticoselichens that grow as leafless mini-shrubs.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - B. S. Paliya
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - R. Bajpai
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - V. Jadaun
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - J. Kumar
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - S. Kumar
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - D. K. Upreti
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - B. R. Singh
- Centre of Excellence in Materials Science (Nanomaterials)
- Z. H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh-202002
- India
| | - S. Nayaka
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | | | - Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| |
Collapse
|
26
|
Fan YB, Huang M, Cao Y, Gong P, Liu WB, Jin SY, Wen JC, Jing YK, Liu D, Zhao LX. Usnic acid is a novel Pim-1 inhibitor with the abilities of inhibiting growth and inducing apoptosis in human myeloid leukemia cells. RSC Adv 2016. [DOI: 10.1039/c6ra01159d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Usnic acid, a potent Pim-1 inhibitor, represents a lead compound for developing effective therapeutics for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Yin-bo Fan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Yu Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Ping Gong
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Wen-bing Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Shu-yu Jin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Jia-chen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Yong-kui Jing
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
- Department of Medicine
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Lin-xiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| |
Collapse
|
27
|
Wang J, Hao M, Liu C, Liu R. Cadmium induced apoptosis in mouse primary hepatocytes: the role of oxidative stress-mediated ERK pathway activation and the involvement of histone H3 phosphorylation. RSC Adv 2015. [DOI: 10.1039/c5ra03210e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Time-delayed apoptosis induced by cadmium in primary hepatocytes through DNA damage, histone modification and ERK signaling cascade, which are all mediated by oxidative stress.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Minglu Hao
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Chunguang Liu
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering
- Shandong University
- China-America CRC for Environment & Health
- Jinan 250100
- P. R. China
| |
Collapse
|