1
|
Wang S, Shi Y, Zhang H, Sun Y, Wang F, Zeng L, Li X, Wu A, Zhang Y. Colorimetric sensor for Cr (VI) by oxidative etching of gold nanotetrapods at room temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122589. [PMID: 36930834 DOI: 10.1016/j.saa.2023.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) is highly carcinogenic and mutagenic, which is seriously harmful to human health. Hence, it is important to create a probe that can detect Cr(VI) effectively. In this work, gold nanotetrapods (Au NTPs) were applied in colorimetric detection for the first time. Based on the oxidative etching principle of Cr(VI) on Au NTPs, a sensitive and multicolor response detection method for Cr(VI) was established. The oxidative etching of Au NTPs by Cr(VI) resulted in the blue shift of plasmon resonance absorption peak of Au NTPs with the change of morphology. As the etching progress processed, Au NTPs solution exhibited obvious color changes from gray-green to blue-violet and then to pink. This multicolor response design is very convenient for naked-eye detection. The limit of detection (LOD) of Cr(VI) is 3 nM for the naked eyes and 0.5 nM for UV-vis spectrum, both of which are lower than the toxicity level of Cr(VI) (0.2 μM) set by United States Environmental Protection Agency. This sensing method exhibits good linearity between the wavelength shift and Cr(VI) concentration in the range of 0.5 nM to 8 nM. The detection results of Cr(VI) in actual environmental samples demonstrate that the Au NTPs colorimetric probe (Au-N-Probe) is expected to be applied to the detection of Cr(VI) in water environmental samples such as lake water and industrial wastewater.
Collapse
Affiliation(s)
- Shengwen Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yu Shi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, China
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Yufeng Sun
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Fangfang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, China
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Kumar A, Mohan B, Parikh J, Modi K. The spectroscopic and computational study of anthracene based chemosensor - Ag + interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121889. [PMID: 36150260 DOI: 10.1016/j.saa.2022.121889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Here in, we demonstrate a selective detection of Ag+ ion by the anthracene-based schiff base sensor AMC. The recognition event among sensor AMC and Ag+ ion was investigated by enhanced absorption band, red-shifted quenched emission spectra, electrochemical studies and DFT computational studies. The presence of Ag+ ion to solution of AMC quenched almost 50 % emission intensity of the ligand band. Data from high-resolution electrospray ionization mass spectrometry (ESI-HRMS), Ag+ titrations, and Job's plot studies all show that Ag+ binds to AMC in a 1:1 stoichiometric ratio.The quantitative parameters of sensor for silver ion are determined as the limit of detection (LOD) 5.95 × 10-7 M, and limit of quantitation (LOQ) 1.98 × 10-8 M in the linear range 3.48-20.31 × 10-6 M with good association affinity of 5.030 × 103 M-1. LMCT phenomenon from insilico studies, is in good agreement with the results obtained from other performed spectroscopic techniques. In addition, this sensor AMC was also successfully applied to real water samples for the identification and measurement of Ag+ ions.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra 136119, India.
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Jaymin Parikh
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana 382740, Gujarat, India.
| |
Collapse
|
3
|
An Anthracene and Indole-based Fluorescent Probe for the Detection of Chromium(III) Ions in Real Water Samples. J Fluoresc 2023; 33:185-190. [PMID: 36323831 DOI: 10.1007/s10895-022-03041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
A novel fluorescent probe possessing anthracene with an indole unit was designed and synthesized to detect chromium(III) ions (Cr3+) with high sensitivity and selectivity. The probe was synthesized in one step by mixing two commercially available chemicals, 2-aminoanthracene and Indole-5-carboxaldehyde. The probe molecule (ANT-In) demonstrates distinct properties, for instance, "turn-on" fluorescence response, high sensitivity and selectivity in less than one minute, and low detection limit (0.2 µM) via hydrolysis of the C = N bond. Additionally, the probe ANT-In was successfully used to identify the presence of chromium(III) ions in real water samples.
Collapse
|
4
|
Musikavanhu B, Zhang Y, Zhu D, Xue Z, Yuan R, Wang S, Zhao L. Turn-off detection of Cr(III) with chelation enhanced fluorescence quenching effect by a naphthyl hydrazone Shiff base chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121599. [PMID: 35816866 DOI: 10.1016/j.saa.2022.121599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A thiophene substituted naphthyl hydrazone derivative NHT was synthesized using a one-step route for the detection of trivalent chromium (Cr3+). UV-visible absorption and emission spectra, density functional theory calculations as well as 1H NMR titration confirmed that the probe underwent a turn-off response via the chelation enhanced fluorescence quenching effect upon exposure to Cr3+ and the NHT-Cr3+ complex was formed at a 1:1 binding stoichiometry. NHT exhibited a fast response rate of 2.3 min in buffer solution and a relatively low limit of detection of 41 nM. In addition, the Schiff base chemosensor exhibited excellent selectivity with high affinity towards Cr3+ in the presence of other competing cations. Bioimaging of the probe in PC3 cells further demonstrated the potential real life application of the probe in detecting Cr3+.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Rui Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Bilgic A, Cimen A, Kursunlu AN. "Killing two birds with one stone": A fluorescent hybrid nanoparticle modified with BODIPY for efficiently detection and removal of toxic Cu (II) ion from aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157170. [PMID: 35820529 DOI: 10.1016/j.scitotenv.2022.157170] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we successfully synthesized a fluorescent hybrid material (f-Silica gel) for the removal and recognition of cations. A Bodipy derivative was used as a source of fluorescent material. The characterization of Bodipy derivative and the modified surfaces were performed by some techniques like NMR, XRD, SEM, and FT-IR. The spectroscopic studies (complex stoichiometry, pH effect, response time) were carried out with fluorescence spectroscopy for the sensitive and selective recognition of Cu (II) ions. The LOD (limit of detection) was calculated as 4.63 μM and the most optimum response time was determined as 25 min. Moreover, the complex interaction between f-Silica gel and Cu (II) ions stables generally in the range of pH: 1-12. f-Silica gel can be also used as a solid support surface to remove Cu (II) ions from the wastewater. The adsorption kinetics and isotherms of Cu (II) on the f-Silica gel were determined with several parameters such as the amount of adsorbent, temperature, and pH. Langmuir adsorption isotherm model was performed for the adsorption of Cu (II) ions and the maximum capacity was found to be 19. 920 mg/g. The kinetic data ensured that the R2 value was obtained as 0.9941 from the kinetic model (pseudo-second-order). Thus, it is very close to the desired value (1) and the value of qe(expe) is very close to the value of qe(calc). The thermodynamic results support the spontaneous, random, and endothermic adsorption process. All results indicated that the hybrid material can be used as both a sensor and an adsorbent for the detection and removal of Cu (II) ions in environmental processes.
Collapse
Affiliation(s)
- Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Türkiye
| | - Aysel Cimen
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Türkiye
| | | |
Collapse
|
6
|
AIE based colorimetric and fluorescent sensor for the selective detection of CN− in aqueous media. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Algethami JS. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr 3+/6+Ions. Crit Rev Anal Chem 2022; 54:487-507. [PMID: 35758232 DOI: 10.1080/10408347.2022.2082242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chromium occurs in the environment primarily in two valence states, trivalent Cr3+ and hexavalent Cr6+, which have different physicochemical and biochemical properties. However, the higher concentration of Cr3+/6+ can cause various adverse effects on human health. Therefore, detecting Cr3+/6+ ions is important in various samples. Colorimetric and fluorescent chemosensors are the most powerful tools for the detection of Cr3+/6+ ions. These chemosensors have excellent bioimaging capability and significant sensitivity and selectivity. In this article, different colorimetric and fluorescent chemosensors based on organic compounds, including Schiff base, antipyrine, diarylethene, pyrene, crown ether, dansyl, pyridine, thiazole, coumarin, boradiazaindacene, rhodamine, imidazole, hydrazone, and other functional groups for detection of Cr3+/6+ ions have been reviewed, classified them according to different fluorophore and recognition mode. I hope this article will help the readers for the future design of highly effective, sensitive, and selective chemosensors for the detection and determination of Cr3+/6+ ions.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| |
Collapse
|
8
|
Kursunlu AN, Yilmaz AK, Yemisci E, Guler E. Photophysical challenges and antenna effect between click reaction-based Bodipy derivatives manufactured from Knorr pyrrole. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Rohman MA, Phanrang PT, Chamlagai D, Mitra S. Deciphering Spectroscopic and Structural Insights into the Photophysical Behavior of 2,2'-Dipyridylamine: An Efficient Environment Sensitive Fluorescence Probe. J Phys Chem A 2021; 125:6964-6975. [PMID: 34372657 DOI: 10.1021/acs.jpca.1c04772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excited state deactivation properties and the effects of solvent hydrogen bonding (HB) on the photophysical behavior of 2,2'-dypyridylamine (DPyA) were investigated by steady state and time-resolved fluorescence experiments, molecular docking, and density functional theory (DFT) calculations. In addition to the polarity effect, the contributions of solvent HB donation (HBD) acidity and HB acceptance (HBA) basicity to modulate the solvatochromic spectral properties were estimated from multiparametric linear regression analysis using Kamlet-Taft (KT) and Catalán formalisms. The importance of C-N bond torsion, leading to the trans → cis conversion, was manifested by substantial increase in DPyA fluorescence yield in the presence of cyclodextrin (CD) and glycerol. The unusually low fluorescence yield in aqueous medium was explained on the basis of synergistic effect of solvent hydrogen bonding combined with excited state conformational isomerization, which renders DPyA to be an excellent environment sensitive fluorescence reporter. The experimental results were verified with structural insights obtained from DFT calculations at B3LYP/6-311++G(d,p) level and construction of potential energy surface (PES) in the ground state as well as in the excited states.
Collapse
Affiliation(s)
| | | | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong-793022, India
| |
Collapse
|
10
|
N,N-Di(pyridin-2-yl)quinolin-6-amine: synthesis and coordination properties. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Yue XL, Wang ZQ, Li CR, Yang ZY. A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:415-421. [PMID: 29277072 DOI: 10.1016/j.saa.2017.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/08/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a simple naphthalene-based derivative (HL) has been designed and synthesized as a Al3+-selective fluorescent chemosensor based on the PET mechanism. HL exhibited high selectivity and sensitivity towards Al3+ over other commonly coexisting metal ions in ethanol with a detection limit of 2.72nM. The 1:1 binding stoichiometry of the complex (HL-Al3+) was determined from the Job's plot based on fluorescence titrations and the ESI-MS spectrum data. Moreover, the binding site of HL with Al3+ was assured by the 1H NMR titration experiment. The binding constant (Ka) of the complex (HL-Al3+) was calculated to be 5.06×104M-1 according to the Benesi-Hildebrand equation. In addition, the recognizing process of HL towards Al3+ was chemically reversible by adding Na2EDTA. Importantly, HL could directly and rapidly detect aluminum ion through the filter paper without resorting to additional instrumental analysis.
Collapse
Affiliation(s)
- Xiao-Li Yue
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | - Zhao-Qing Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | - Chao-Rui Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | - Zheng-Yin Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Balamurugan G, Velmathi S. Coplanarity driven fluorescence turn-on sensor for chromium(iii) and its application for bio-imaging. Photochem Photobiol Sci 2018; 17:239-244. [DOI: 10.1039/c7pp00425g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensing behaviour of benzimidazole and thiozole derivatives from heteroaromatic aldehyde was studied towards various cations and anions. S1 showed selectivity towards Cr3+ with fluorescence enhancement and live cell imaging of Hela cells was successfully demonstrated.
Collapse
Affiliation(s)
- G. Balamurugan
- Organic and polymer synthesis Laboratory
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - S. Velmathi
- Organic and polymer synthesis Laboratory
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620015
- India
| |
Collapse
|
13
|
Eseola AO, Görls H, Bangesh M, Plass W. ESIPT-capable 2,6-di(1H-imidazol-2-yl)phenols with very strong fluorescent sensing signals towards Cr(iii), Zn(ii), and Cd(ii): molecular variation effects on turn-on efficiency. NEW J CHEM 2018. [DOI: 10.1039/c8nj01265b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The derivatization influence was studied for twelve 2,6-di(1H-imidazol-2-yl)phenols, whereby a strong fluorescent sensitivity for Cr(iii) was reported, while Zn(ii)/Cd(ii) sensing potentials also appeared.
Collapse
Affiliation(s)
- Abiodun O. Eseola
- Materials Chemistry Group
- Department of Chemical Sciences
- Redeemer's University Ede
- Nigeria
- Institut für Anorganische und Analytische Chemie
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | | | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| |
Collapse
|
14
|
Li XM, Zhao RR, Yang Y, Lv XW, Wei YL, Tan R, Zhang JF, Zhou Y. A Rhodamine-based fluorescent sensor for chromium ions and its application in bioimaging. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Xia HC, Xu XH, Song QH. BODIPY-Based Fluorescent Sensor for the Recognization of Phosgene in Solutions and in Gas Phase. Anal Chem 2017; 89:4192-4197. [PMID: 28252931 DOI: 10.1021/acs.analchem.7b00203] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a highly toxic and widely used chemical, phosgene has become a serious threat to humankind and public security because of its potential use by terrorists and unexpected release during industrial accidents. For this reason, it is an urgent need to develop facile, fast, and selective detection methods of phosgene. In this Article, we have constructed a highly selective fluorescent sensor o-Pab for phosgene with a BODIPY unit as a fluorophore and o-phenylenediamine as a reactive site. The sensor o-Pab exhibits rapid response (∼15 s) in both colorimetric and turn-on fluorescence modes, high selectivity for phosgene over nerve agent mimics and various acyl chlorides and a low detection limit (2.7 nM) in solutions. In contrast to most undistinguishable sensors reported, o-Pab can react with phosgene but not with its substitutes, triphosgene and biphosgene. The excellent discrimination of o-Pab has been demonstrated to be due to the difference in highly reactive and bifunctional phosgene relative to its substitutes. Furthermore, a facile testing paper has been fabricated with poly(ethylene oxide) immobilizing o-Pab on a filter paper for real-time selective monitoring of phosgene in gaseous phase.
Collapse
Affiliation(s)
- Hong-Cheng Xia
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Xiang-Hong Xu
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Qin-Hua Song
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China , Hefei 230026, P. R. China
| |
Collapse
|
16
|
A highly selective colorimetric and fluorescent chemosensor for Cr2+ in aqueous solutions. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Navarro M, Wang S, Müller-Bunz H, Redmond G, Farràs P, Albrecht M. Triazolylidene Metal Complexes Tagged with a Bodipy Chromophore: Synthesis and Monitoring of Ligand Exchange Reactions. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Miquel Navarro
- Department für
Chemie und Biochemie, Universität Bern, CH−3012 Bern, Switzerland
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Suxiao Wang
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helge Müller-Bunz
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gareth Redmond
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pau Farràs
- School of
Chemistry, NUI Galway, Galway, Ireland
| | - Martin Albrecht
- Department für
Chemie und Biochemie, Universität Bern, CH−3012 Bern, Switzerland
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Verbelen B, Valckenborgh M, Inclán M, Nebot A, Dehaen W, García-España E. Efficient two-step synthesis of water soluble BODIPY–TREN chemosensors for copper(ii) ions. RSC Adv 2017. [DOI: 10.1039/c6ra27299a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two promising, highly selective, water soluble, Cu(ii) sensors were synthesized in two reaction steps, using C–H functionalization reactions.
Collapse
Affiliation(s)
- Bram Verbelen
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Marlon Valckenborgh
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Mario Inclán
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Aida Nebot
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Wim Dehaen
- Molecular Design and Synthesis
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - Enrique García-España
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| |
Collapse
|
19
|
Kong L, Lu K, Ma G, Yao Y, Ling X, Liu W. On-off Bodipy chemosensor for recognition of iron(III) ion based on the inner filter effect and its applications in cellular and bacterial imaging. LUMINESCENCE 2016; 31:1448-1455. [PMID: 27005824 DOI: 10.1002/bio.3127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/11/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
One strong fluorescent Bodipy-containing derivative was synthesized and characterized using 1 H NMR, electrospray ionization mass spectrometry and elemental analysis. Its electrochemical and photophysical properties were investigated. In addition, the Bodipy derivative could be used as an on-off fluorescent probe for the detection of Fe3+ ions based on the inner filter effect because the absorption band of the Fe3+ ion overlaps the excitation band of Bodipy very well upon irradiation with UV light. Furthermore, the Bodipy-based sensor has obvious advantages including simplicity, rapid response, high selectivity, sensitivity and a detection limit of 1.2 μmol/L, and has been demonstrated in real water samples including tap water, mineral water and water from Lake Tai. Moreover, the fluorescent probe could also be used as a probe for the determination of Fe3+ in cellular and bacterial imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lingcan Kong
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, People's Republic of China
| | - Keyu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Guangyuan Ma
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, People's Republic of China
| | - Yuyang Yao
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, People's Republic of China
| | - Xia Ling
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, People's Republic of China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, People's Republic of China
| |
Collapse
|
20
|
Wang DH, Zhang Y, Sun R, Zhao DZ. Dimethyl yellow-based colorimetric chemosensors for “naked eye” detection of Cr3+ in aqueous media via test papers. RSC Adv 2016. [DOI: 10.1039/c5ra22127g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New dimethyl yellow-based dipodal receptors as colorimetric probes were designed and synthesised for selectively sensing Cr3+ in a “naked eye” output manner via test papers.
Collapse
Affiliation(s)
- De-Hui Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- China
| | - Yuan Zhang
- Liaoning Institute for Food Control
- Shenyang
- China
| | - Ran Sun
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- China
| | - De-Zhi Zhao
- College of Chemistry, Chemical Engineering and Environmental Engineering
- Liaoning Shihua University
- Fushun
- China
| |
Collapse
|
21
|
Brzeczek A, Piwowar K, Domagala W, Mikołajczyk MM, Walczak K, Wagner P. Systematic elongation of thienyl linkers and their effect on optical and electrochemical properties in carbazole–BODIPY donor–acceptor systems. RSC Adv 2016. [DOI: 10.1039/c6ra04984b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synthesis, spectral and electrochemical properties of a series of new panchromatic BODIPY donor–acceptor–donor derivatives, comprising carbazole conjugated with systematically elongated framework by thiophene – based linkers were investigated.
Collapse
Affiliation(s)
- Alina Brzeczek
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute
- University of Wollongong
- Australia
- Faculty of Chemistry
- Silesian University of Technology
| | - Katarzyna Piwowar
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute
- University of Wollongong
- Australia
- Faculty of Chemistry
- Silesian University of Technology
| | - Wojciech Domagala
- Faculty of Chemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Mikołaj M. Mikołajczyk
- Faculty of Chemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
- Wrocław University of Technology
| | - Krzysztof Walczak
- Faculty of Chemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Pawel Wagner
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute
- University of Wollongong
- Australia
| |
Collapse
|
22
|
Fan C, Huang X, Black CA, Shen X, Qi J, Yi Y, Lu Z, Nie Y, Sun G. A fast-response, fluorescent ‘turn-on’ chemosensor for selective detection of Cr3+. RSC Adv 2015. [DOI: 10.1039/c5ra11460h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly selective and sensitive chemosensor 3 for Cr3+ detection was designed and synthesized, which showed a fast turn-on fluorescence response under physiological conditions.
Collapse
Affiliation(s)
- Chunhua Fan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Ximing Huang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Cory A. Black
- The Australian Wine Research Institute
- Glen Osmond
- Australia
| | - Xingxing Shen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Junjie Qi
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yong Nie
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|