1
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
2
|
Madani F, Morovvati H, Webster TJ, Najaf Asaadi S, Rezayat SM, Hadjighassem M, Khosravani M, Adabi M. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood-brain-barrier in a glioblastoma model. Sci Rep 2024; 14:19516. [PMID: 39174603 PMCID: PMC11341868 DOI: 10.1038/s41598-024-69888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Sareh Najaf Asaadi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bao L, Cui X, Chen C. Toxicology for Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
Toxicology for Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_9-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Granja A, Pinheiro M, Sousa CT, Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem Pharmacol 2021; 190:114639. [PMID: 34077740 DOI: 10.1016/j.bcp.2021.114639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Due to the limitations of the current therapeutics, new treatment options are needed. Hyperthermia is a promising approach to improve breast cancer therapy, particularly when combined with chemo and radiotherapy. This area has gained more attention following association with nanotechnology, with the emergence of modalities, such as photothermal therapy (PTT). PTT is a simple, minimally invasive technique that requires a near infrared (NIR) light source and a PTT agent. Gold nanostructures are excellent PTT agents as they offer biocompatibility, versatility, high photothermal conversion efficiency, imaging contrast and an easily-modified surface. In this review, we describe the molecular basis and the current clinical aspects of hyperthermia-based therapies. The emergent area of nanoparticle-induced hyperthermia will be explored, in particular gold nanostructure-mediated PTT, focusing on recent preclinical studies for breast cancer management.
Collapse
Affiliation(s)
- Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia T Sousa
- IFIMUP and Dep. Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169 - 007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Sun Y, Liu N, Wang Y, Yin Y, Qu G, Shi J, Song M, Hu L, He B, Liu G, Cai Y, Liang Y, Jiang G. Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. Anal Chem 2020; 92:14872-14877. [PMID: 32972134 DOI: 10.1021/acs.analchem.0c02285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticles (AuNPs) are increasingly being used as diagnostic and therapeutic agents owing to their excellent properties; however, there is not much data available on their dynamics in vivo on a single particle basis in a single mouse. Here, we developed a method for the direct analysis of nanoparticles in trace blood samples based on single particle inductively coupled plasma-mass spectrometry (spICP-MS). A flexible, highly configurable, and precisely controlled sample introduction system was designed by assembling an ultralow-volume autosampler (flow rate in the range of 5-5000 μL/min) and a customized cyclonic spray chamber (transfer efficiency up to 99%). Upon systematic optimization, the detection limit of the nanoparticle size (LODsize) of AuNPs in ultrapure water was 19 nm, and the detection limit of the nanoparticle number concentration (LODNP) was 8 × 104 particle/L. Using a retro-orbital blood sampling method and subsequent dilution, the system was successfully applied to track the dynamic changes in size and concentration for AuNPs in the blood of a single mouse, and the recovery for the blood sample was 111.74%. Furthermore, the concentration of AuNPs in mouse blood reached a peak in a short period of time and, then, gradually decreased. This study provides a promising technique for analyzing and monitoring the size and concentration of nanoparticles in ultralow-volume blood samples with low concentrations, making it a powerful tool for analyzing and understanding the fate of nanoparticles in vivo.
Collapse
Affiliation(s)
- Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China.,School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, Hubei 430056, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430000, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
8
|
Fanoro OT, Oluwafemi OS. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics 2020; 12:E1044. [PMID: 33143388 PMCID: PMC7693967 DOI: 10.3390/pharmaceutics12111044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
As the field of nanomedicine develops and tackles the recent surge in antibiotic resistance, there is a need to have an in-depth understanding and a synergistic view of research on the effectiveness of a metal nanoparticle (NP) as an antibacterial agent especially their mechanisms of action. The constant development of bacterial resistance has led scientists to develop novel antibiotic agents. Silver, gold and its bimetallic combination are one of the most promising metal NPs because they show strong antibacterial activity. In this review we discuss the mode of synthesis and the proposed mechanism of biocidal antibacterial activity of metal NPs. These mechanisms include DNA degradation, protein oxidation, generation of reactive oxygen species, lipid peroxidation, ATP depletion, damage of biomolecules and membrane interaction.
Collapse
Affiliation(s)
- Olufunto T. Fanoro
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Oluwatobi S. Oluwafemi
- Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg 2028, South Africa;
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
9
|
Dey P, Blakey I, Stone N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem Sci 2020; 11:8671-8685. [PMID: 34123125 PMCID: PMC8163366 DOI: 10.1039/d0sc01926g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous developments in optical biomedical imaging research utilizing gold nanostructures as contrast agents have advanced beyond basic research towards demonstrating potential as diagnostic tools; some of which are translating into clinical applications. Recent advances in optics, lasers and detection instrumentation along with the extensive, yet developing, knowledge-base in tailoring the optical properties of gold nanostructures has significantly improved the prospect of near-infrared (NIR) optical detection technologies. Of particular interest are optical coherence tomography (OCT), photoacoustic imaging (PAI), multispectral optoacoustic tomography (MSOT), Raman spectroscopy (RS) and surface enhanced spatially offset Raman spectroscopy (SESORS), due to their respective advancements. Here we discuss recent technological developments, as well as provide a prediction of their potential to impact on clinical diagnostics. A brief summary of each techniques' capability to distinguish abnormal (disease sites) from normal tissues, using endogenous signals alone is presented. We then elaborate on the use of exogenous gold nanostructures as contrast agents providing enhanced performance in the above-mentioned techniques. Finally, we consider the potential of these approaches to further catalyse advances in pre-clinical and clinical optical diagnostic technologies. Optical biomedical imaging research utilising gold nanostructures as contrast agents has advanced beyond basic science, demonstrating potential in various optical diagnostic tools; some of which are currently translating into clinical applications.![]()
Collapse
Affiliation(s)
- Priyanka Dey
- School of Physics and Astronomy, University of Exeter Exeter EX4 4QL UK
| | - Idriss Blakey
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland St. Lucia 4072 Australia.,Centre for Advanced Imaging, University of Queensland St. Lucia 4072 Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland St. Lucia 4072 Australia
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter Exeter EX4 4QL UK
| |
Collapse
|
10
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
11
|
Hu J, Gao G, He M, Yin Q, Gao X, Xu H, Sun T. Optimal route of gold nanoclusters administration in mice targeting Parkinson’s disease. Nanomedicine (Lond) 2020; 15:563-580. [DOI: 10.2217/nnm-2019-0268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To explore the optimal route of gold nanoclusters (AuNCs) administration in mice targeting Parkinson’s disease. Materials & methods: Assessing the pharmacokinetic and bioavailability of AuNCs in mice administrated following intravenous, intraperitoneal, gavage and intranasal injection. Investigating the biodistribution of AuNCs in mice by atomic absorption spectrometry and transmission electron microscope. Toxicity assessments of AuNCs were carried out both in cells and in mice. Results: Administration of AuNCs via intraperitoneal injection showed the greatest bioavailability and the longest residence in brain. AuNCs could penetrate blood–brain barrier and be excreted mainly through kidney. No obvious toxicity of AuNCs found in cells and in mice. Conclusion: The optimal route of AuNCs administration in mice targeting Parkinson’s disease is intraperitoneal administration.
Collapse
Affiliation(s)
- Jinqi Hu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Meng He
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Qiang Yin
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, No. 627 Wuluo Road, Wuhan, 430070, PR China
| | - Haixing Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
- State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
12
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Quantitative, real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic tomography (MSOT) imaging. J Pharm Biomed Anal 2019; 178:112951. [PMID: 31718983 DOI: 10.1016/j.jpba.2019.112951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023]
Abstract
The goal of this work was to demonstrate real-time tracking of in vivo nanoparticle concentrations utilizing multispectral optoacoustic tomography (MSOT). Combining the high contrast of optical imaging with the high resolution of ultrasound imaging, MSOT was utilized for non-invasive, real-time tomographic imaging of particles in mice and the results calibrated against analysis of tissue samples with electron paramagnetic resonance (EPR) spectroscopy. In a longitudinal study, the pharmacokinetics (pK) and biodistribution of Cyanine-7 (Cy7) conjugated superparamagnetic iron oxide nanoparticles (Cy7-SPIONs) were monitored after intravenous administration into the tail vein of healthy B6-albino mice. Concentrations of Cy7-SPIONs determined by MSOT image analysis of the liver, spleen, and kidneys showed excellent agreement with EPR data obtained on tissue samples ‒ validating MSOT's ability to quantify SPION concentrations with high spatial resolution. Both methods of analysis indicated highest accumulation of Cy7-SPIONs in the liver followed by the spleen, and negligible accumulation in the kidneys; SPION accumulation in organs with high concentrations of mononuclear phagocytic system macrophages is typical. Additionally, our study observed that particles modified with a 2 kDa polyethylene glycol (PEG) demonstrated significantly prolonged half-life in circulation compared to particles with 5 kDa PEG. The study demonstrates the potential of Cy7-SPIONs and MSOT for quantitative localization of magnetic nanoparticles in vivo, which can potentially be used to study their toxicity, quantify the efficacy of targeted drug delivery (e.g. within tumors), and their use as a multi-modal diagnostic agent to monitor disease progression.
Collapse
|
14
|
Lee S, Lee C, Park S, Lim K, Kim SS, Kim JO, Lee ES, Oh KT, Choi HG, Youn YS. Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. Int J Pharm 2018; 553:363-374. [PMID: 30385372 DOI: 10.1016/j.ijpharm.2018.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
Gold nanoclusters (AuNCs) have been considered to be a promising candidate for hyperthermia-based anticancer therapy. Herein, we introduce albumin-assisted AuNCs composed of small gold nanoparticles (AuNPs, <6 nm) assembled with strands of polyallylamine (PAH), which exhibited strong surface plasmon resonance upon near-infrared (NIR, ∼808 nm) laser irradiation and good in vivo stability. Our albumin-assisted PAH-AuNCs (BSA/PAH-AuNCs) were facilely fabricated as a top-down process by a simple ultrasonication after the preparation of large nano-aggregates of PAH-AuNPs. Albumin played a critical role as a stabilizer and surfactant in making loosely associated large aggregates and thereby producing small gold nanoclusters (∼60 nm) of slightly negative charge upon ultrasonication. The prepared BSA/PAH-AuNCs displayed excellent hyperthermal effects (∼60 °C) in response to ∼808-nm NIR laser irradiation in a 4T1 cell system in vitro and in 4T1 cell tumor xenograft mice in vivo, indicating their remarkable potential to suppress breast cancer growth, without almost no significant toxicity in histology. Consequently, our gold nanoclusters should be considered as a promising photothermal agent that are easy to manufacture and exhibit marked anticancer effects in terms of tumor ablation.
Collapse
Affiliation(s)
- Sungin Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sanghyun Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung Soo Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyongsan 38541, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
15
|
Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 2018; 1052:1-9. [PMID: 30685026 DOI: 10.1016/j.aca.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
Abstract
Interactions of gold nanoparticles (AuNPs) with live cells are known to exert a great impact on their functions, including cell signalling, genomic, proteomic, and metabolomic processes. Modern analytical techniques applied to studying nanoparticle-cell interactions are to improve our understanding of the mode of action of AuNPs, which is essential for their approval in disease therapeutics. Such methods may vary depending on what step of particle internalization is in question, i.e., cellular uptake, intracellular transport (accompanying by changes in the chemical state), translocation to different cell compartments, interaction with relevant subcellular structures and localization. This review focuses on the implementation and critical assessment of advanced analytical methodologies to investigate the cellular processing of AuNPs. Also addressed is a sought-after issue of accounting in in-vitro studies for a chemical form in which the AuNPs enter the cell in vivo.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Svetlana S Aleksenko
- Saratov State Agrarian University, Teatralnaya Sq. 1, 410012, Saratov, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei R Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland; Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
16
|
Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, Razansky D, Ntziachristos V, Kircher MF. Dual-Modality Surface-Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800740. [PMID: 29726109 PMCID: PMC6541212 DOI: 10.1002/smll.201800740] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Difficulty in visualizing glioma margins intraoperatively remains a major issue in the achievement of gross total tumor resection and, thus, better clinical outcome of glioblastoma (GBM) patients. Here, the potential of a new combined optical + optoacoustic imaging method for intraoperative brain tumor delineation is investigated. A strategy using a newly developed gold nanostar synthesis method, Raman reporter chemistry, and silication method to produce dual-modality contrast agents for combined surface-enhanced resonance Raman scattering (SERRS) and multispectral optoacoustic tomography (MSOT) imaging is devised. Following intravenous injection of the SERRS-MSOT-nanostars in brain tumor bearing mice, sequential MSOT imaging is performed in vivo and followed by Raman imaging. MSOT is able to accurately depict GBMs three-dimensionally with high specificity. The MSOT signal is found to correlate well with the SERRS images. Because SERRS enables uniquely sensitive high-resolution surface detection, it could represent an ideal complementary imaging modality to MSOT, which enables real-time, deep tissue imaging in 3D. This dual-modality SERRS-MSOT-nanostar contrast agent reported here is shown to enable high precision depiction of the extent of infiltrating GBMs by Raman- and MSOT imaging in a clinically relevant murine GBM model and could pave new ways for improved image-guided resection of brain tumors.
Collapse
Affiliation(s)
- Volker Neuschmelting
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center, Munich, Germany
- These authors contributed equally to this work
| | - Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- These authors contributed equally to this work
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center, Munich, Germany
| | - Hannah Lockau
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hsiao-Ting Hsu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center, Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center, Munich, Germany
| | - Moritz F. Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Radiology, Weill Cornell Medical College
| |
Collapse
|
17
|
Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, Razansky D, Ntziachristos V, Kircher MF. Dual-Modality Surface-Enhanced Resonance Raman Scattering and Multispectral Optoacoustic Tomography Nanoparticle Approach for Brain Tumor Delineation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800740. [PMID: 29726109 DOI: 10.1002/smll.v14.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Indexed: 05/23/2023]
Abstract
Difficulty in visualizing glioma margins intraoperatively remains a major issue in the achievement of gross total tumor resection and, thus, better clinical outcome of glioblastoma (GBM) patients. Here, the potential of a new combined optical + optoacoustic imaging method for intraoperative brain tumor delineation is investigated. A strategy using a newly developed gold nanostar synthesis method, Raman reporter chemistry, and silication method to produce dual-modality contrast agents for combined surface-enhanced resonance Raman scattering (SERRS) and multispectral optoacoustic tomography (MSOT) imaging is devised. Following intravenous injection of the SERRS-MSOT-nanostars in brain tumor bearing mice, sequential MSOT imaging is performed in vivo and followed by Raman imaging. MSOT is able to accurately depict GBMs three-dimensionally with high specificity. The MSOT signal is found to correlate well with the SERRS images. Because SERRS enables uniquely sensitive high-resolution surface detection, it could represent an ideal complementary imaging modality to MSOT, which enables real-time, deep tissue imaging in 3D. This dual-modality SERRS-MSOT-nanostar contrast agent reported here is shown to enable high precision depiction of the extent of infiltrating GBMs by Raman- and MSOT imaging in a clinically relevant murine GBM model and could pave new ways for improved image-guided resection of brain tumors.
Collapse
Affiliation(s)
- Volker Neuschmelting
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Neurosurgery, University Hospital Cologne, Cologne, 50937, Germany
- Institute for Biological and Medical Imaging, Technical University of Neuherberg and Helmholtz Center, Neuherberg, 85764, Germany
| | - Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging, Technical University of Neuherberg and Helmholtz Center, Neuherberg, 85764, Germany
| | - Hannah Lockau
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hsiao-Ting Hsu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Neuherberg and Helmholtz Center, Neuherberg, 85764, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Neuherberg and Helmholtz Center, Neuherberg, 85764, Germany
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
18
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
19
|
Wang H, Sheng W. 131I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma. NANOSCALE RESEARCH LETTERS 2017; 12:365. [PMID: 28532129 PMCID: PMC5438325 DOI: 10.1186/s11671-017-2140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Herein, folic acid (FA) conjugated Poly(d,l-lactide-co-glycolide) (PLGA)-lipid composites (FA-PL) were developed as nanocarriers for the targeted delivery of insoluble anti-cancer drug paclitaxel (PTX), resulting FA-PLP nanoparticles. Furthermore, 131I, as a radioactive tracer, was used to label FA-PLP nanoparticles (FA-PLP-131I) to evaluate their cell uptake activity, in vivo blood circulation, and biodistribution. The FA-PLP-131I nanoparticles had a spherical morphology with great stability, a narrow size distribution (165.6 and 181.2 nm), and -22.1 mV in average zeta potential. Confocal laser scanning microscopy indicated that the targeting molecule FA promotes PLP-131I uptake by melanoma B16F10 cells, which was further confirmed by the cell incorporation rate via 131I activity detection as measured by a gamma counter. FA-PLP-131I without PTX (FA-PL-131I) shows minor cytotoxicity, good biocompatibility, while FA-PLP-131I was demonstrated to have efficient cell viability suppression compared to free PTX and PLP-131I. Following intravenous injection, the blood circulation half-life of free PTX (t 1/2 = 5.4 ± 0.23 h) was prolonged to 18.5 ± 0.5 h by FA-PLP-131I. Through FA targeting, the tumor uptake of FA-PLP-131I was approximately 4.41- and 12.8-fold higher compared to that of PLP-131I and free PTX-131I, respectively. Moreover, following 40 days of treatment, FA-PLP-131I showed an improved tumor inhibition effect compared to free PTX and PLP-131I, with no relapse and no remarkable systemic in vivo toxicity. The results demonstrate that the 131I-labeled PLGA-lipid nanoparticle can be simultaneously applied for targeted drug delivery and reliable tracking of drugs in vivo.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Weizhong Sheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
21
|
Nie X, Tang J, Liu Y, Cai R, Miao Q, Zhao Y, Chen C. Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1879-1890. [PMID: 28365417 DOI: 10.1016/j.nano.2017.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023]
Abstract
The interaction between bone marrow-derived mesenchymal stem cells (BDMSCs) and tumor cells promotes tumor proliferation and metastasis. We found that 4T1 breast cancer cells induced malignant differentiation of BDMSCs and that BDMSCs also affected the growth and metastasis of 4T1 cells. However, when the interaction between BDMSCs and 4T1 cells was attenuated or blocked by C60(OH)22 nanoparticles, tumor growth and metastasis were significantly suppressed. The suppression of metastasis depended on the activation of MAPK signals in the BDMSCs, whereas the underlying pathways were related to a broad range of extracellular responses and were modulated by the secretion of multiple cytokines. Interestingly, C60(OH)22 regulated the malignantly differentiated BDMSCs via the Erk- and p38-MAPK and its downstream NF-κB signal pathway, but in normal BDMSCs regulation occurred only through Erk- and p38-MAPK and not by NF-κB activation. This study may provide a novel mechanism for C60(OH)22 nanoparticles as an anti-tumor drug.
Collapse
Affiliation(s)
- Xin Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China; Divisions of Pediatric Surgery and Pediatric Pathology, Departments of Surgery and Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Pan Y, Ren X, Wang S, Li X, Luo X, Yin Z. Annexin V-Conjugated Mixed Micelles as a Potential Drug Delivery System for Targeted Thrombolysis. Biomacromolecules 2017; 18:865-876. [PMID: 28240872 DOI: 10.1021/acs.biomac.6b01756] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To alleviate the hemorrhagic side effect of thrombolysis therapy, a thrombus targeted drug delivery system based on the specific affinity of Annexin V to phosphatidylserine exposed on the membrane surface of activated platelet was developed. The amphiphilic and biodegradable biomaterial, polycaprolactone-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-hydroxyethyl methacrylate) (PCL-b-PDMAEMA-b-PHEMA (PCDH)) triblock polymer, was synthesized via ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP) to use as the nanocarriers of thrombolytic drug. In order to conjugate Annexin V to the polymer, PCDH was modified by succinic anhydride via ring-opening reaction to introduce the carboxyl group (PCDH-COOH). After preparation of PCDH/PCDH-COOH (9/1, m/m) mixed micelles, Annexin V was coupled with the micelles using carbodiimide chemistry. The blood clot lysis assay in vitro confirmed that lumbrokinase-loaded targeted micelles (LKTM) had stronger thrombolysis potency than free lumbrokinase (LK) and LK-loaded nontargeted micelles (LKM, P < 0.05). In vivo thrombolytic assay, multispectral, optoacoustic tomography (MSOT) was used to assess the target ability of LKTM. The results of MSOT images indicated the fluorescence intensity of the LKTM group located in the blood clot position were significantly stronger than the LKM group. A 5 mm of carotid artery containing blood clot was cut out 24 h later after administration to assess the degree of thrombolysis. The results of thrombolytic assay in vivo were consistent with the assay in vitro, which the differences between LK, LKM, and LKTM groups were both statistically significant. All the results of thrombolysis assays above proved that the capacity of thrombolysis in the LKTM group was optimal. It suggested that Annexin V-conjugated micelles will be a potential drug delivery system for targeted thrombolysis.
Collapse
Affiliation(s)
- Yang Pan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Xiaoting Ren
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Shuang Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Xin Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University , Chengdu, 610065, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
23
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
24
|
de Barros HR, Piovan L, Sassaki GL, de Araujo Sabry D, Mattoso N, Nunes ÁM, Meneghetti MR, Riegel-Vidotti IC. Surface interactions of gold nanorods and polysaccharides: From clusters to individual nanoparticles. Carbohydr Polym 2016; 152:479-486. [DOI: 10.1016/j.carbpol.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
|
25
|
Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1805-1813. [DOI: 10.1016/j.nano.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/25/2023]
|
26
|
Choi S, Moon Y, Yoo H. Finely tunable fabrication and catalytic activity of gold multipod nanoparticles. J Colloid Interface Sci 2016; 469:269-276. [DOI: 10.1016/j.jcis.2016.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
27
|
Vinluan RD, Zheng J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 2015; 10:2781-94. [PMID: 26377047 PMCID: PMC4714949 DOI: 10.2217/nnm.15.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While the synthesis of metal nanoparticles (NPs) with fascinating optical and electronic properties have progressed dramatically and their potential biomedical applications were also well demonstrated in the past decade, translation of metal NPs into the clinical practice still remains a challenge due to their severe accumulation in the body. Herein, we give a brief review on size-dependent material properties of metal NPs and their potential biomedical applications, followed by a summary of how structural parameters such as size, shape and charge influence their interactions with serum protein adsorption, cellular uptake and excretion pathways. Finally, the future challenges in minimizing serum protein adsorption and expediting clinical translation of metal NPs were also discussed.
Collapse
Affiliation(s)
- Rodrigo D Vinluan
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
28
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Yu Q, Wei Z, Shi J, Guan S, Du N, Shen T, Tang H, Jia B, Wang F, Gan Z. Polymer–Doxorubicin Conjugate Micelles Based on Poly(ethylene glycol) and Poly(N-(2-hydroxypropyl) methacrylamide): Effect of Negative Charge and Molecular Weight on Biodistribution and Blood Clearance. Biomacromolecules 2015; 16:2645-55. [DOI: 10.1021/acs.biomac.5b00460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingsong Yu
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenke Wei
- The
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jiyun Shi
- Medical
Isotopes Research Center, Peking University, Beijing 100191, China
| | - Shuli Guan
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Du
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tong Shen
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Tang
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Jia
- Medical
Isotopes Research Center, Peking University, Beijing 100191, China
| | - Fan Wang
- Medical
Isotopes Research Center, Peking University, Beijing 100191, China
| | - Zhihua Gan
- The
State Key laboratory of Organic−inorganic Composites, Beijing
Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- The
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|