1
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Siva Prasad P, Byram PK, Hazra C, Chakravorty N, Sen R, Das S, Das K. Biosurfactant-Assisted Cu Doping of Brushite Coatings: Enhancing Structural, Electrochemical, and Biofunctional Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10601-10622. [PMID: 38376231 DOI: 10.1021/acsami.3c15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.
Collapse
Affiliation(s)
- Pakanati Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Structure and stability analysis of antibacterial substance produced by selenium enriched Bacillus cereus BC1. Arch Microbiol 2022; 204:196. [PMID: 35217921 DOI: 10.1007/s00203-022-02798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms can produce many antibiotics against bacteria and fungi, which have been used as a potential choice of new antibiotics. In this paper, we studied the characteristics of antibacterial substances by Bacillus cereus BC1. The results showed that the acid-precipitated substance played the main role in antibacterial activity, and further characterization indicated that the antibacterial substance might be a lipopeptide substance. Then the antibacterial spectrum suggested that the antibacterial substance had an inhibitory effect on Gram-positive bacteria and fungi, while selenium-riched antibacterial substance of Bacillus cereus BC1 could significantly enhance the inhibition. Then the morphological effects of the antibacterial substance to indicator bacteria were determined. The effects of different treatment methods on the stability of antibacterial substances were studied and the results showed that the antibacterial substance was stable to heat, ultrasonic, and ultraviolet treatment, and their antibacterial activity would not be greatly affected. However, they were sensitive to pepsin. The optimum pH range of antibacterial activity was 3-5. This study may contribute to reusing the fermentation supernatant often discarded in the previous fermentation process. At the same time, the lipopeptide antibacterial substance extracted from the fermentation broth of selenium-enriched Bacillus cereus BC1 can be used in the development of antibiotics and biopesticides, and open up a new way for the control of plant diseases.
Collapse
|
4
|
Garduño-Félix KG, Ramirez K, Salazar-Salas NY, Amabilis-Sosa LE, Rochín-Medina JJ. Phenolic profile in black sesame sprouts biostimulated with Bacillus clausii. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01115-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Nayarisseri A, Khandelwal R, Singh SK. Identification and Characterization of Lipopeptide Biosurfactant Producing Microbacterium sp Isolated from Brackish River Water. Curr Top Med Chem 2020; 20:2221-2234. [PMID: 32598258 DOI: 10.2174/1568026620666200628144716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bioremediation has taken its call for removing pollutants for years. The oilcontaminated surroundings are majorly hazardous for sustaining life, but a great contribution to nature in the form of microorganisms. The complex carbon-hydrogen chain has served as classic raw material to chemical industries, which has perked up the hydrocarbon waste. Microbial remediation has been thus, focused to deal with the lacuna, where the new addition to this category is Microbacterium species. OBJECTIVES The identification and characterization of lipopeptide biosurfactant producing Microbacterium spp. isolated from brackish river water. METHODS The strain was isolated from an oil-contaminated lake. The strain was tested with all the other isolated species for oil degradation using screening protocols such as haemolysis, oil spread assay, BATH, E24, etc. The produced biosurfactant was extracted by acid precipitation, followed by solvent recovery. The strain with maximum potential was sequenced and was subjected to phylogeny assessment using in silico tools. RESULTS Novel Microbacterium species produce the extracellular biosurfactant. The surface tension of Microbacterium was found to be 32mN/m, indicates its powerful surface tension-reducing property. The strain was optimized for the production of biosurfactant and the best results were obtained with sucrose (2%) and yeast extract (3%) medium at 7 pH and 40°C temperature. CONCLUSION The isolate was confirmed to be a novel Microbacterium species that could produce 0.461 gm biosurfactant in 100 ml of the medium throughout a life cycle and novel strain of isolate was deposited to NCBI as Microbacterium spp. ANSKSLAB01 using an accession number: KU179507.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore – 452 010, Madhya Pradesh, India,Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore - 452010, Madhya Pradesh, India,Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Indore – 452 010, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
7
|
Dahmana H, Raoult D, Fenollar F, Mediannikov O. Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions. Pathogens 2020; 9:pathogens9060486. [PMID: 32570965 PMCID: PMC7350308 DOI: 10.3390/pathogens9060486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Mosquitoes can transmit to humans devastating and deadly pathogens. As many chemical insecticides are banned due to environmental side effects or are of reduced efficacy due to resistance, biological control, including the use of bacterial strains with insecticidal activity, is of increasing interest and importance. The urgent actual need relies on the discovery of new compounds, preferably of a biological nature. Here, we explored the phenomenon of natural larvae mortality in larval breeding sites to identify potential novel compounds that may be used in biological control. From there, we isolated 14 bacterial strains of the phylum Firmicutes, most of the order Bacillales. Cultures were carried out under controlled conditions and were separated on supernatant and pellet fractions. The two fractions and a 1:1 mixture of the two fractions were tested on L3 and early L4 Aedes albopictus. Two concentrations were tested (2 and 6 mg/L). Larvae mortality was recorded at 24, 48 and 72 h and compared to that induced by the commercialized B. thuringiensis subsp. israelensis. Of the 14 strains isolated, 11 were active against the A. albopictus larvae: 10 of the supernatant fractions and one pellet fraction, and mortality increased with the concentration. For the insecticide activity prediction in three strains of the Bacillus cereus complex, PCR screening of the crystal (Cry) and cytolytic (Cyt) protein families characteristic to B. thuringiensis subsp. israelensis was performed. Most of the genes coding for these proteins' synthesis were not detected. We identified bacterial strains that exhibit higher insecticidal activity compared with a commercial product. Further studies are needed for the characterization of active compounds.
Collapse
Affiliation(s)
- Handi Dahmana
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; (H.D.); (D.R.)
- IHU-Méditerranée Infection, 13005 Marseille, France;
| | - Didier Raoult
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; (H.D.); (D.R.)
- IHU-Méditerranée Infection, 13005 Marseille, France;
| | - Florence Fenollar
- IHU-Méditerranée Infection, 13005 Marseille, France;
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; (H.D.); (D.R.)
- IHU-Méditerranée Infection, 13005 Marseille, France;
- Correspondence: ; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)4-13-73-24-02
| |
Collapse
|
8
|
Radha P, Suhazsini P, Prabhu K, Jayakumar A, Kandasamy R. Chicken Tallow, a Renewable Source for the Production of Biosurfactant byYarrowia lipolyticaMTCC9520, and its Application in Silver Nanoparticle Synthesis. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Panjanathan Radha
- Biomolecules and Biocatalysis Laboratory, Department of BiotechnologySRM Institute of Science and Technology Kattankulathur, Kancheepuram District Tamil Nadu 603203 India
| | - Priya Suhazsini
- Biomolecules and Biocatalysis Laboratory, Department of BiotechnologySRM Institute of Science and Technology Kattankulathur, Kancheepuram District Tamil Nadu 603203 India
| | - Keerthana Prabhu
- Biomolecules and Biocatalysis Laboratory, Department of BiotechnologySRM Institute of Science and Technology Kattankulathur, Kancheepuram District Tamil Nadu 603203 India
| | - Anjali Jayakumar
- Biomolecules and Biocatalysis Laboratory, Department of BiotechnologySRM Institute of Science and Technology Kattankulathur, Kancheepuram District Tamil Nadu 603203 India
| | - Ramani Kandasamy
- Biomolecules and Biocatalysis Laboratory, Department of BiotechnologySRM Institute of Science and Technology Kattankulathur, Kancheepuram District Tamil Nadu 603203 India
| |
Collapse
|
9
|
Fei D, Zhou G, Yu Z, Gang H, Liu J, Yang S, Ye R, Mu B. Low‐Toxic and Nonirritant Biosurfactant Surfactin and its Performances in Detergent Formulations. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12356] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Fei
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Guang‐Wei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Zhou‐Qiang Yu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Hong‐Ze Gang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Jin‐Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Shi‐Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Ru‐Qiang Ye
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
| | - Bo‐Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P.R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology Shanghai 200237 P.R. China
| |
Collapse
|
10
|
Alves AR, Sequeira AM, Cunha Â. Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria. Lett Appl Microbiol 2019; 69:79-86. [PMID: 31077423 DOI: 10.1111/lam.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Considering that bacterial biosurfactants (BSFs) are released as secondary metabolites involved in biotic relations within mixed bacterial assemblages, the hypothesis that the co-cultivation of BSF producing bacteria with biofilm-forming strains would enhance BSF synthesis was tested. Environmental BSF producing strains of Bacillus licheniformis and Pseudomonas sp. were cultivated with reference biofilm-forming strains (Pseudomonas aeruginosa and Listeria innocua). BSF production and quorum-quenching effects were tested in solid media. Tensioactive and anionic BSFs were also quantified in cell-free extracts (CFEs). BSF production increased in co-cultures with inducer strains although this was not demonstrated by all screening methods. Increased concentrations of anionic BSF were detected in CFEs of co-cultures in which Pseudomonas aeruginosa was included as inducer, which is in accordance with the observation of larger halos in cetyl trimethylammonium bromide-methylene blue agar. The results demonstrate that co-cultivation positively affects the efficiency of BSF production and that higher production yields may be attained by selecting convenient inducer partners in designed consortia. SIGNIFICANCE AND IMPACT OF THE STUDY: The high production cost of biosurfactants (BSFs) still represents a major limitation to the industrial use of these otherwise advantageous alternatives to chemical surfactants. This work demonstrates that the co-cultivation of consortia of biosurfactant-producer and biofilm-forming bacteria enhances BSF production and may contribute to the cost-effectiveness of biosurfactant-based products.
Collapse
Affiliation(s)
- A R Alves
- Biology Department & CESAM, University of Aveiro, Aveiro, Portugal
| | - A M Sequeira
- Biology Department & CESAM, University of Aveiro, Aveiro, Portugal
| | - Â Cunha
- Biology Department & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Goswami M, Deka S. Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B Biointerfaces 2019; 178:285-296. [DOI: 10.1016/j.colsurfb.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/12/2023]
|
12
|
Chaprão MJ, da Silva RDCFS, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of oil-contaminated environments. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1310-1322. [PMID: 30392032 DOI: 10.1007/s10646-018-1982-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to produce a microbial biosurfactant for use in the bioremediation of environments contaminated with petroleum products. Bacillus methylotrophicus was isolated from seawater taken from a port area and cultivated using industrial waste as substrate (corn steep liquor and sugarcane molasses [both at 3%]). Surface tension measurements and motor oil emulsification capacity were used for the evaluation of the production of the biosurfactant, which demonstrated stability in a broad range of pH and temperature as well as a high concentration of saline, with the reduction of the surface tension of water to 29 mN/m. The maximum concentration of biosurfactant (10.0 g/l) was reached after 144 h of cultivation. The biosurfactant was considered to be a lipopeptide based on the results of proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. The tests demonstrated that the biosurfactant is innocuous and has potential for the bioremediation of soil and water contaminated by petroleum products. Thus, the biosurfactant described herein has a low production cost and can be used in environmental processes.
Collapse
Affiliation(s)
- Marco José Chaprão
- Northeast Biotechnology Network (RENORBIO), Federal Rural University of Pernambuco, Rua Dom, Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
| | - Rita de Cássia F Soares da Silva
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Raquel D Rufino
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Juliana M Luna
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Valdemir A Santos
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Leonie A Sarubbo
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil.
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil.
| |
Collapse
|
13
|
Sun W, Cao W, Jiang M, Saren G, Liu J, Cao J, Ali I, Yu X, Peng C, Naz I. Isolation and characterization of biosurfactant-producing and diesel oil degrading Pseudomonas sp. CQ2 from Changqing oil field, China. RSC Adv 2018; 8:39710-39720. [PMID: 35558056 PMCID: PMC9091294 DOI: 10.1039/c8ra07721e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
In the present research investigation, 13 indigenous bacteria (from CQ1 to CQ13) were isolated from soil collected from Changqing oil field of Xi'an, China. Four promising biosurfactant producers (CQ1, CQ2, CQ4, and CQ13) were selected through primary screening among these 13 strains, including via drop collapse and oil-spreading methods. However, only the strain CQ2 showed the best biosurfactant production and was further screened by hemolytic assay, cetyl trimethyl ammonium bromide (CTAB), surface tension and emulsifying activity. The bacterium CQ2 has the ability to produce about 3.015 g L-1 of biosurfactant using glucose as the sole carbon source without any optimization. The produced biosurfactant could greatly reduce surface tension from 72.66 to 24.72 mN m-1 with a critical micelle concentration (CMC) of 30 mg L-1 and emulsify diesel oil up to 60.1%. The cell-free broth was found to be stable in wide temperature (4-100 °C), pH (6-12) and salinity (2-20%) ranges for surface and emulsifying activity. This biosurfactant was preliminarily found to be of a glycolipid nature as evident from thin-layer chromatographic (TLC) and Fourier transform infra-red spectroscopic (FTIR) analyses. Moreover, CQ2 was able to degrade 54.7% of diesel oil, which surprisingly could form a substantial amount of bioflocculants during the degradation process. Furthermore, the 16S rDNA sequence using the Genbank BLAST tool revealed that isolated CQ2 was closely related to species of Pseudomonas genus and, thus, was entitled Pseudomonas sp. CQ2. The results of residual diesel oil contents measured by GC-MS showed that C7-C28 hydrocarbons could be degraded by Pseudomonas sp. CQ2. Thus, these findings revealed that CQ2 could be applied for remediation of diesel oil/petroleum-contaminated waters and soils on a large scale.
Collapse
Affiliation(s)
- Wuyang Sun
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China Qingdao 266100 China +86 532 66782011
- College of Environmental Science and Engineering, Ocean University of China Qingdao 266100 China
| | - Wenrui Cao
- The Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Mingyu Jiang
- The Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Gaowa Saren
- The Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Jiwei Liu
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China Qingdao 266100 China +86 532 66782011
- College of Environmental Science and Engineering, Ocean University of China Qingdao 266100 China
- School of Environmental and Chemical Engineering, Zhaoqing University Zhaoqing 526061 China
| | - Jiangfei Cao
- School of Environmental and Chemical Engineering, Zhaoqing University Zhaoqing 526061 China
| | - Imran Ali
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China Qingdao 266100 China +86 532 66782011
- College of Environmental Science and Engineering, Ocean University of China Qingdao 266100 China
| | - Xinke Yu
- The Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China Qingdao 266100 China +86 532 66782011
- College of Environmental Science and Engineering, Ocean University of China Qingdao 266100 China
- School of Environmental and Chemical Engineering, Zhaoqing University Zhaoqing 526061 China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University Buraidah 51452 Kingdom of Saudi Arabia +966533897891
- Department Microbiology, Quaid-i-Azam University Islamabad Pakistan
| |
Collapse
|
14
|
Ohadi M, Dehghannoudeh G, Forootanfar H, Shakibaie M, Rajaee M. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int J Biol Macromol 2018; 112:712-719. [PMID: 29425877 DOI: 10.1016/j.ijbiomac.2018.01.209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
In the present study the produced biosurfactant of Acinetobacter junii B6 (recently isolated from Iranian oil excavation site) were partially purified and identified by high performance thin layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H NMR). Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) revealed that the biosurfactant was anionic in nature. The physiochemical properties of the lipopeptide biosurfactant were evaluated by determination of its critical micelle concentration (CMC) and hydrophile-lipophile balance (HLB). The produced biosurfactant decreased the surface tension of water to 36mNm-1 with the CMC of approximately 300mg/l. Furthermore, the solubility properties of the biosurfactant (dissolved in phosphate-buffer saline solution, pH7.4) were investigated by turbidity examination, dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM) inspection. It could be concluded that the biosurfactant showed the spherical-shaped vesicles at a concentration higher than its CMC and the circular dichroism (CD) spectra showed that the secondary structure of the biosurfactant vesicles is dominated by the β sheet.
Collapse
Affiliation(s)
- Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Rajaee
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Vecino X, Cruz JM, Moldes AB, Rodrigues LR. Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 2017; 37:911-923. [PMID: 28076995 DOI: 10.1080/07388551.2016.1269053] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cosmetic products play an essential role in everyone's life. People everyday use a large variety of cosmetic products such as soap, shampoo, toothpaste, deodorant, skin care, perfume, make-up, among others. The cosmetic industry encompasses several environmental, social and economic impacts that are being addressed through the search for more efficient manufacturing techniques, the reduction of waste and emissions and the promotion of personal hygiene, contributing to an improvement of public health and at the same time providing employment opportunities. The current trend among consumers is the pursuit for natural ingredients in cosmetic products, as many of these products exhibit equal, better or additional benefits in comparison with the chemical-based products. In this sense, biosurfactants are natural compounds with great potential in the formulation of cosmetic products given by their biodegradability and impact in health. Indeed, many of these biosurfactants could exhibit a "prebiotic" character. This review covers the current state-of-the-art of biosurfactant research for cosmetic purposes and further discusses the future challenges for cosmetic applications.
Collapse
Affiliation(s)
- X Vecino
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal.,b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - J M Cruz
- b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - A B Moldes
- b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - L R Rodrigues
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| |
Collapse
|
16
|
Bhardwaj G, Cameotra SS, Chopra HK. Biosurfactant from Lysinibacillus chungkukjangi from Rice Bran Oil Sludge and Potential Applications. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1857-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yadav AK, Manna S, Pandiyan K, Singh A, Kumar M, Chakdar H, Kashyap PL, Srivastava AK. Isolation and characterization of biosurfactant producing Bacillus sp. from diesel fuel-contaminated site. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716010161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S, Kharat A, Kharat K. Surfactin-functionalized poly(methyl methacrylate) as an eco-friendly nano-adsorbent: from size-controlled scalable fabrication to adsorptive removal of inorganic and organic pollutants. RSC Adv 2016. [DOI: 10.1039/c6ra10804k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Green synthesis of poly(methyl methacrylate) nanoparticles functionalized with the biosurfactant surfactin for adsorptive and reusable removal of toxic metals and organic compounds.
Collapse
Affiliation(s)
- Debasree Kundu
- School of Life Sciences
- North Maharashtra University
- Jalgaon
- India
| | - Chinmay Hazra
- School of Life Sciences
- North Maharashtra University
- Jalgaon
- India
| | - Aniruddha Chatterjee
- University Institute of Chemical Technology
- North Maharashtra University
- Jalgaon
- India
| | | | - Satyendra Mishra
- University Institute of Chemical Technology
- North Maharashtra University
- Jalgaon
- India
| | | | - Kiran Kharat
- Department of Biotechnology
- Deogiri College
- Aurangabad
- India
| |
Collapse
|
19
|
Bhardwaj G, Cameotra SS, Chopra HK. Isolation and purification of a new enamide biosurfactant from Fusarium proliferatum using rice-bran. RSC Adv 2015. [DOI: 10.1039/c5ra08017g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new fungusFusarium proliferatumwas isolated from the oil contaminated sludge of the rice-bran oil industry, which was capable of producing biosurfactants when grown on rice-bran.
Collapse
Affiliation(s)
- Garima Bhardwaj
- Department of Chemistry
- Sant Longowal Institute of Engineering and Technology
- Longowal-148106
- India
| | | | - Harish Kumar Chopra
- Department of Chemistry
- Sant Longowal Institute of Engineering and Technology
- Longowal-148106
- India
| |
Collapse
|
20
|
Anvari S, Hajfarajollah H, Mokhtarani B, Noghabi KA. Physiochemical and thermodynamic characterization of lipopeptide biosurfactant secreted by Bacillus tequilensis HK01. RSC Adv 2015. [DOI: 10.1039/c5ra17275f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An extensive investigation was applied to isolate biosurfactant producing bacteria from urban waste.
Collapse
Affiliation(s)
- Sanam Anvari
- Chemistry and Chemical Engineering Research Center of Iran
- Tehran
- Iran
| | | | - Babak Mokhtarani
- Chemistry and Chemical Engineering Research Center of Iran
- Tehran
- Iran
| | | |
Collapse
|
21
|
Kundu D, Hazra C, Chaudhari A. Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Adv 2015. [DOI: 10.1039/c5ra02450a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Physiological responses ofRhodococcus pyridinivoransNT2 and elucidation of metabolic intermediates formed during biodegradation of 2,4-DNT.
Collapse
Affiliation(s)
- Debasree Kundu
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| | - Chinmay Hazra
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| | - Ambalal Chaudhari
- School of Life Sciences
- North Maharashtra University
- Jalgaon 425 001
- India
| |
Collapse
|
22
|
Xia W, Dong H, Zheng C, Cui Q, He P, Tang Y. Hydrocarbon degradation by a newly isolated thermophilic Anoxybacillus sp. with bioemulsifier production and new alkB genes. RSC Adv 2015. [DOI: 10.1039/c5ra17137g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a new thermophilic bacterial strain was isolated and identified asAnoxybacillussp. WJ-4. This strain of WJ-4 can degrade a wide range of hydrocarbons, and production of an oligosaccharide–lipid–peptide bioemulsifier was detected.
Collapse
Affiliation(s)
- Wenjie Xia
- Power Environmental Energy Research Institute
- Covina
- USA
- Institute of Porous Flow & Fluid Mechanics
- Chinese Academy of Sciences
| | - Hao Dong
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- PR China
| | - Chenggang Zheng
- Petroleum Exploration and Production Research Institute
- SINOPEC
- PR China
| | - Qingfeng Cui
- Institute of Porous Flow & Fluid Mechanics
- Chinese Academy of Sciences
- Langfang 065007
- PR China
| | - Panqing He
- Power Environmental Energy Research Institute
- Covina
- USA
| | - Yongchun Tang
- Power Environmental Energy Research Institute
- Covina
- USA
| |
Collapse
|