1
|
Churchman LR, Giang PD, Buczynski JB, Stok JE, Bell SG, De Voss JJ. Synthesis of substituted norcaranes for use as probes of enzyme mechanisms. Org Biomol Chem 2023; 21:9647-9658. [PMID: 38037692 DOI: 10.1039/d3ob01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Norcarane is a mechanistic probe of monooxygenase enzymes that is able to detect the presence of cationic or radical intermediates. The addition of substituents around the bicycloheptane ring of the norcarane scaffold can assist in improving enzyme binding affinity and thus improve the regioselectivity of oxidation. Here we prepare in three-step, diastereoselective syntheses, ten norcaranes monosubstituted α to the cyclopropane as advanced probes. Four of these compounds were examined in enzyme binding experiments to evaluate their potential as probe substrates. Additionally, 19 potential products of enzymatic oxidation were generated via two additional synthetic steps for use as product standards in future studies.
Collapse
Affiliation(s)
- Luke R Churchman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Peter D Giang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Julia B Buczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Subedi P, Do H, Lee JH, Oh TJ. Crystal Structure and Biochemical Analysis of a Cytochrome P450 CYP101D5 from Sphingomonas echinoides. Int J Mol Sci 2022; 23:ijms232113317. [PMID: 36362105 PMCID: PMC9655578 DOI: 10.3390/ijms232113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Correspondence: (J.H.L.); (T.-J.O.); Tel.: +82-32-760-5555 (J.H.L.); +82-41-530-2677 (T.-J.O.); Fax: +82-32-760-5509 (J.H.L.); +82-41-530-2279 (T.-J.O.)
| |
Collapse
|
3
|
Ancient Bacterial Class Alphaproteobacteria Cytochrome P450 Monooxygenases Can Be Found in Other Bacterial Species. Int J Mol Sci 2021; 22:ijms22115542. [PMID: 34073951 PMCID: PMC8197338 DOI: 10.3390/ijms22115542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, are well-known players in the generation of chemicals valuable to humans and as a drug target against pathogens. Understanding the evolution of P450s in a bacterial population is gaining momentum. In this study, we report comprehensive analysis of P450s in the ancient group of the bacterial class Alphaproteobacteria. Genome data mining and annotation of P450s in 599 alphaproteobacterial species belonging to 164 genera revealed the presence of P450s in only 241 species belonging to 82 genera that are grouped into 143 P450 families and 214 P450 subfamilies, including 77 new P450 families. Alphaproteobacterial species have the highest average number of P450s compared to Firmicutes species and cyanobacterial species. The lowest percentage of alphaproteobacterial species P450s (2.4%) was found to be part of secondary metabolite biosynthetic gene clusters (BGCs), compared other bacterial species, indicating that during evolution large numbers of P450s became part of BGCs in other bacterial species. Our study identified that some of the P450 families found in alphaproteobacterial species were passed to other bacterial species. This is the first study to report on the identification of CYP125 P450, cholesterol and cholest-4-en-3-one hydroxylase in alphaproteobacterial species (Phenylobacterium zucineum) and to predict cholesterol side-chain oxidation capability (based on homolog proteins) by P. zucineum.
Collapse
|
4
|
Babot ED, Aranda C, Del Rı O JC, Ullrich R, Kiebist J, Scheibner K, Hofrichter M, Martı Nez AT, Gutiérrez A. Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5375-5383. [PMID: 32292026 DOI: 10.1021/acs.jafc.0c01019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apocarotenoids are among the most highly valued fragrance constituents, being also appreciated as synthetic building blocks. This work shows the ability of unspecific peroxygenases (UPOs, EC1.11.2.1) from several fungi, some of them being described recently, to catalyze the oxyfunctionalization of α- and β-ionones and α- and β-damascones. Enzymatic reactions yielded oxygenated products such as hydroxy, oxo, carboxy, and epoxy derivatives that are interesting compounds for the flavor and fragrance and pharmaceutical industries. Although variable regioselectivity was observed depending on the substrate and enzyme, oxygenation was preferentially produced at the allylic position in the ring, being especially evident in the reaction with α-ionone, forming 3-hydroxy-α-ionone and/or 3-oxo-α-ionone. Noteworthy were the reactions with damascones, in the course of which some UPOs oxygenated the terminal position of the side chain, forming oxygenated derivatives (i.e., the corresponding alcohol, aldehyde, and carboxylic acid) at C-10, which were predominant in the Agrocybe aegerita UPO reactions, and first reported here.
Collapse
Affiliation(s)
- Esteban D Babot
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - José C Del Rı O
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Jan Kiebist
- JenaBios GmbH, Löbstedter Str. 80, 07749 Jena, Germany
| | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Angel T Martı Nez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| |
Collapse
|
5
|
Sarkar MR, Bell SG. Complementary and selective oxidation of hydrocarbon derivatives by two cytochrome P450 enzymes of the same family. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01040e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome P450 enzymes CYP101B1 and CYP101C1, from a Novosphingobium bacterium, can efficiently hydroxylate hydrocarbon derivatives containing a carbonyl moiety. Cyclic ketones (C9 to C15) were oxidised with contrasting yet high selectivity.
Collapse
Affiliation(s)
| | - Stephen G. Bell
- Department of Chemistry
- University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
6
|
Wang GK, Zhang N, Yao JN, Yu Y, Wang G, Hung CC, Cheng YY, Morris-Natschke SL, Zhou ZY, Liu JS, Lee KH. Kalshinoids A-F, Anti-inflammatory Sesquiterpenes from Kalimeris shimadae. JOURNAL OF NATURAL PRODUCTS 2019; 82:3372-3378. [PMID: 31804830 DOI: 10.1021/acs.jnatprod.9b00693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In a study of the potential anti-inflammatory constituents from Kalimeris shimadae, six new sesquiterpenes, kalshinoids A-F (1-6), together with 21 known compounds (7-27), were isolated. The structures and absolute configurations of the new compounds were discerned from extensive spectroscopic analysis, and the absolute configurations of kalshinoids A, B, E, and F were established by ECD calculations. Furthermore, the identified compounds were tested for anti-inflammatory activity as assessed by inhibition of tumor necrosis factor-alpha (TNF-α) in THP-1 cells. Three sesquiterpenes [kalshinoid F, 4(15)-eudesmen-1β,7,11-triol, and 4α,10α,11-trihydroxy-1βH,5βH-guai-7(8)-ene] reduced levels of TNF-α in lipopolysaccharide-stimulated THP-1 cells in a concentration-dependent manner and were more potent than dexamethasone. These natural sesquiterpenes merit further investigation as possible anti-inflammatory agents.
Collapse
Affiliation(s)
- Guo-Kai Wang
- School of Pharmacy , Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica , Hefei 230012 , People's Republic of China
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599-7568 , United States
| | - Nan Zhang
- School of Pharmacy , Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica , Hefei 230012 , People's Republic of China
| | - Jian-Neng Yao
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Yang Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| | - Gang Wang
- School of Pharmacy , Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica , Hefei 230012 , People's Republic of China
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy , China Medical University , Taichung 40402 , Taiwan
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599-7568 , United States
- Chinese Medicine Research and Development Center , China Medical University and Hospital , Taichung 40402 , Taiwan
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599-7568 , United States
| | - Zhong-Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Jin-Song Liu
- School of Pharmacy , Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica , Hefei 230012 , People's Republic of China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599-7568 , United States
- Chinese Medicine Research and Development Center , China Medical University and Hospital , Taichung 40402 , Taiwan
| |
Collapse
|
7
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Sarkar MR, Dasgupta S, Pyke SM, Bell SG. Selective biocatalytic hydroxylation of unactivated methylene C-H bonds in cyclic alkyl substrates. Chem Commun (Camb) 2019; 55:5029-5032. [PMID: 30968888 DOI: 10.1039/c9cc02060h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1 from Novosphingobium aromaticivorans selectively hydroxylated methylene C-H bonds in cycloalkyl rings. Cycloketones and cycloalkyl esters containing C6, C8, C10 and C12 rings were oxidised with high selectively on the opposite side of the ring to the carbonyl substituent. Cyclodecanone was oxidised to oxabicycloundecanol derivatives in equilibrium with the hydroxycyclodecanones.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
9
|
Klenk JM, Dubiel P, Sharma M, Grogan G, Hauer B. Characterization and structure-guided engineering of the novel versatile terpene monooxygenase CYP109Q5 from Chondromyces apiculatus DSM436. Microb Biotechnol 2019; 12:377-391. [PMID: 30592153 PMCID: PMC6389848 DOI: 10.1111/1751-7915.13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023] Open
Abstract
One of the major challenges in chemical synthesis is the selective oxyfunctionalization of non-activated C-H bonds, which can be enabled by biocatalysis using cytochrome P450 monooxygenases. In this study, we report on the characterization of the versatile CYP109Q5 from Chondromyces apiculatus DSM436, which is able to functionalize a wide range of substrates (terpenes, steroids and drugs), including the ring of β-ionone in non-allylic positions. The crystal structure of CYP109Q5 revealed flexibility within the active site pocket that permitted the accommodation of bulky substrates, and enabled a structure-guided approach to engineering the enzyme. Some variants of CYP109Q5 displayed a switch in selectivity towards the non-allylic positions of β-ionone, allowing the simultaneous production of 2- and 3-hydroxy-β-ionone, which are chemically challenging to synthesize and are important precursors for carotenoid synthesis. An efficient whole-cell system finally enabled the production of up to 0.5 g l-1 hydroxylated products of β-ionone; this system can be applied to product identification in further biotransformations. Overall, CYP109Q5 proved to be highly evolvable and active. The studies in this work demonstrate that, using rational mutagenesis, the highly versatile CYP109Q5 generalist can be progressively evolved to be an industrially valuable specialist for the synthesis of specific products.
Collapse
Affiliation(s)
- Jan M. Klenk
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Paulina Dubiel
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Mahima Sharma
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
10
|
Klenk JM, Fischer MP, Dubiel P, Sharma M, Rowlinson B, Grogan G, Hauer B. Identification and characterization of cytochrome P450 1232A24 and 1232F1 from Arthrobacter sp. and their role in the metabolic pathway of papaverine. J Biochem 2019; 166:51-66. [DOI: 10.1093/jb/mvz010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractCytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.
Collapse
Affiliation(s)
- Jan M Klenk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Max-Philipp Fischer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Paulina Dubiel
- Department of Chemistry, University of York, Heslington, York, UK
| | - Mahima Sharma
- Department of Chemistry, University of York, Heslington, York, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, UK
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
11
|
Putkaradze N, Litzenburger M, Abdulmughni A, Milhim M, Brill E, Hannemann F, Bernhardt R. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium. Appl Microbiol Biotechnol 2017; 101:8379-8393. [PMID: 29018905 DOI: 10.1007/s00253-017-8552-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.
Collapse
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Martin Litzenburger
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Ammar Abdulmughni
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Mohammed Milhim
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Elisa Brill
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany.
| |
Collapse
|
12
|
Sarkar MR, Lee JHZ, Bell SG. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. Chembiochem 2017; 18:2119-2128. [PMID: 28868671 DOI: 10.1002/cbic.201700316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Hall EA, Sarkar MR, Bell SG. The selective oxidation of substituted aromatic hydrocarbons and the observation of uncoupling via redox cycling during naphthalene oxidation by the CYP101B1 system. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00088j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of polyaromatic hydrocarbons by P450s can be lowered by redox cycling but CYP101B1 regioselectively hydroxylated substituted naphthalenes and biphenyls.
Collapse
Affiliation(s)
- Emma A. Hall
- Department of Chemistry
- University of Adelaide
- Australia
| | | | | |
Collapse
|
14
|
Sarkar MR, Hall EA, Dasgupta S, Bell SG. The Use of Directing Groups Enables the Selective and Efficient Biocatalytic Oxidation of Unactivated Adamantyl C-H Bonds. ChemistrySelect 2016. [DOI: 10.1002/slct.201601615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Emma A. Hall
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Samrat Dasgupta
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| |
Collapse
|
15
|
CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2. Appl Environ Microbiol 2016; 82:6507-6517. [PMID: 27590809 DOI: 10.1128/aem.02067-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/12/2016] [Indexed: 01/21/2023] Open
Abstract
We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling.
Collapse
|
16
|
Hall EA, Sarkar MR, Lee JHZ, Munday SD, Bell SG. Improving the Monooxygenase Activity and the Regio- and Stereoselectivity of Terpenoid Hydroxylation Using Ester Directing Groups. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01882] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma A. Hall
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Md. Raihan Sarkar
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joel H. Z. Lee
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Samuel D. Munday
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen G. Bell
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
17
|
Stok JE, Hall EA, Stone IS, Noble MC, Wong SH, Bell SG, De Voss JJ. In vivo and in vitro hydroxylation of cineole and camphor by cytochromes P450CYP101A1, CYP101B1 and N242A CYP176A1. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Gliszczyńska A, Gładkowski W, Dancewicz K, Gabryś B, Szczepanik M. Transformation of β-damascone to (+)-(S)-4-hydroxy-β-damascone by fungal strains and its evaluation as a potential insecticide against aphids Myzus persicae and lesser mealworm Alphitobius diaperinus Panzer. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Litzenburger M, Bernhardt R. Selective oxidation of carotenoid-derived aroma compounds by CYP260B1 and CYP267B1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 2016; 100:4447-57. [PMID: 26767988 DOI: 10.1007/s00253-015-7269-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022]
Abstract
Due to their bioactive properties as well as their application as precursors in chemical synthesis, hydroxylated isoprenoids and norisoprenoids are very valuable compounds. The efficient hydroxylation of such compounds remains a challenge in organic chemistry caused by the formation of a variety of side products and lack of overall regio- and stereoselectivity. In contrast, cytochromes P450 are known for their selective oxidation under mild conditions. Here, we demonstrate for the first time the ability of myxobacterial CYP260B1 and CYP267B1 from Sorangium cellulosum So ce56 to oxidize such carotenoid-derived aroma compounds. A focused library of 14 substrates such as ionones, damascones, as well as some of their isomers and derivatives was screened in vitro. Both P450s were capable of an efficient oxidation of all tested compounds. CYP260B1-dependent conversions mainly formed multiple products, whereas conversions by CYP267B1 resulted predominantly in a single product. To identify the main products by NMR spectroscopy, an Escherichia coli-based whole-cell system was used. CYP267B1 showed a hydroxylase activity towards the formation of allylic alcohols. Likewise, CYP260B1 performed the allylic hydroxylation of β-damascone [(E)-1-(2,6,6-trimethylcyclohex-1-enyl)but-2-en-1-one] and δ-damascone [(E)-1-(2,6,6-trimethylcyclohex-3-enyl)but-2-en-1-one]. Moreover, CYP260B1 showed an epoxidase activity towards β-ionone [(E)-4-(2,6,6-trimethylcyclohex-1-enyl)but-3-en-2-one] as well as the methyl-substituted α-ionone derivatives raldeine [(E)-1-(2,6,6-trimethylcyclohex-2-enyl)pent-1-en-3-one] and isoraldeine [(E)-3-methyl-4-(2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one]. In addition, to known products, also novel products such as 2-OH-δ-damascone [(E)-1-(5-hydroxy-2,6,6-trimethylcyclohex-3-enyl)but-2-en-1-one], 3-OH-allyl-α-ionone [(E)-1-(4-hydroxy-2,6,6-trimethylcyclohex-2-enyl)hepta-1,6-dien-3-one], and 4-OH-allyl-β-ionone [(E)-1-(3-hydroxy-2,6,6-trimethylcyclohex-1-enyl)hepta-1,6-dien-3-one] were identified during our studies.
Collapse
Affiliation(s)
- Martin Litzenburger
- Institut für Biochemie, Universität des Saarlandes, Campus B.2.2, 66123, Saarbruecken, Germany
| | - Rita Bernhardt
- Institut für Biochemie, Universität des Saarlandes, Campus B.2.2, 66123, Saarbruecken, Germany.
| |
Collapse
|