1
|
Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavíˇek P, Moshammer R. Direct tracking of ultrafast proton transfer in water dimers. SCIENCE ADVANCES 2023; 9:eadg7864. [PMID: 37436977 PMCID: PMC10337913 DOI: 10.1126/sciadv.adg7864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula: see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.
Collapse
Affiliation(s)
- Kirsten Schnorr
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Sven Augustin
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Hannes Lindenblatt
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yifan Liu
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Severin Meister
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Georg Schmid
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Florian Trost
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Petr Slavíˇek
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Robert Moshammer
- Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Water Radical Cations in the Gas Phase: Methods and Mechanisms of Formation, Structure and Chemical Properties. Molecules 2020; 25:molecules25153490. [PMID: 32751962 PMCID: PMC7435662 DOI: 10.3390/molecules25153490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
Water radical cations, (H2O)n+•, are of great research interest in both fundamental and applied sciences. Fundamental studies of water radical reactions are important to better understand the mechanisms of natural processes, such as proton transfer in aqueous solutions, the formation of hydrogen bonds and DNA damage, as well as for the discovery of new gas-phase reactions and products. In applied science, the interest in water radicals is prompted by their potential in radiobiology and as a source of primary ions for selective and sensitive chemical ionization. However, in contrast to protonated water clusters, (H2O)nH+, which are relatively easy to generate and isolate in experiments, the generation and isolation of radical water clusters, (H2O)n+•, is tremendously difficult due to their ultra-high reactivity. This review focuses on the current knowledge and unknowns regarding (H2O)n+• species, including the methods and mechanisms of their formation, structure and chemical properties.
Collapse
|
3
|
Ogata K, Mido T, Siqingaowa, Noguchi K, Yonezawa N, Okamoto A. Ketone-hybridized Cyclic Water Hexamer with Chair-conformation in Crystal of Macrocyclic peri-Aroylnaphthalene Compound. CHEM LETT 2019. [DOI: 10.1246/cl.190663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kazuki Ogata
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Mido
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Siqingaowa
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Yonezawa
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Akiko Okamoto
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Zhao-Qi W, Hai-Yan W, Zeng ZY, Yan C. Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method. Struct Chem 2019. [DOI: 10.1007/s11224-018-1182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Hanasaki K, Kanno M, Niehaus TA, Kono H. An efficient approximate algorithm for nonadiabatic molecular dynamics. J Chem Phys 2019; 149:244117. [PMID: 30599729 DOI: 10.1063/1.5046757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We propose a modification to the nonadiabatic surface hopping calculation method formulated in a paper by Yu et al. [Phys. Chem. Chem. Phys. 16, 25883 (2014)], which is a multidimensional extension of the Zhu-Nakamura theory with a practical diabatic gradient estimation algorithm. In our modification, their diabatic gradient estimation algorithm, which is based on a simple interpolation of the adiabatic potential energy surfaces, is replaced by an algorithm using the numerical derivatives of the adiabatic gradients. We then apply the algorithm to several models of nonadiabatic dynamics, both analytic and ab initio models, to numerically demonstrate that our method indeed widens the applicability and robustness of their method. We also discuss the validity and limitations of our new nonadiabatic surface hopping method while considering in mind potential applications to excited-state dynamics of biomolecules or unconventional nonadiabatic dynamics such as radiation decay processes in ultraintense X-ray fields.
Collapse
Affiliation(s)
- Kota Hanasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Thomas A Niehaus
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeubanne, France
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Fárník M, Pysanenko A, Moriová K, Ballauf L, Scheier P, Chalabala J, Slavíček P. Ionization of Ammonia Nanoices with Adsorbed Methanol Molecules. J Phys Chem A 2018; 122:8458-8468. [PMID: 30296830 DOI: 10.1021/acs.jpca.8b07974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large ammonia clusters represent a model system of ices that are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3) N with the mean size N̅ ≈ 230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3) N(CH3OH) M clusters was estimated to be N: M ≈ 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3) n(CH3OH) mH+ compared to 25% contribution of pure ammonia (NH3) nH+ ions. On the basis of this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH4+ core solvated most likely with four ammonia molecules, yielding the well-known "magic number" structure (NH3)4NH4+. The methanol molecules exhibit a strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D+ transfer from the CD3 group. The proton transfer from the hydroxyl group could not be excluded entirely or confirmed unambiguously by the experiment.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Kamila Moriová
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Lorenz Ballauf
- Institut fur Ionenphysik und Angewandte Physik, Universitat Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut fur Ionenphysik und Angewandte Physik, Universitat Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Jan Chalabala
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Petr Slavíček
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| |
Collapse
|
7
|
Ab initio investigation of the lower-energy candidate structures for (H2O)10+ water cluster. Struct Chem 2018. [DOI: 10.1007/s11224-018-1109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Akopyan AV, Fedorov RA, Andreev BV, Tarakanova AV, Anisimov AV, Karakhanov EA. Oxidative Desulfurization of Hydrocarbon Feedstock. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218040018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ignaczak A, Santos E, Schmickler W, da Costa TF. Oxidation of oxalic acid on boron-doped diamond electrode in acidic solutions. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Oostenrijk B, Walsh N, Laksman J, Månsson EP, Grunewald C, Sorensen SL, Gisselbrecht M. The role of charge and proton transfer in fragmentation of hydrogen-bonded nanosystems: the breakup of ammonia clusters upon single photon multi-ionization. Phys Chem Chem Phys 2018; 20:932-940. [PMID: 29230456 DOI: 10.1039/c7cp06688k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge and proton dynamics in hydrogen-bonded networks are investigated using ammonia as a model system. The fragmentation dynamics of medium-sized clusters (1-2 nm) upon single photon multi-ionization is studied, by analyzing the momenta of small ionic fragments. The observed fragmentation pattern of the doubly- and triply-charged clusters reveals a spatial anisotropy of emission between fragments (back-to-back). Protonated fragments exhibit a distinct kinematic correlation, indicating a delay between ionization and fragmentation (fission). The different kinematics observed for channels containing protonated and unprotonated species provides possible insights into the prime mechanisms of charge and proton transfer, as well as proton hopping, in such a nanoscale system.
Collapse
Affiliation(s)
- Bart Oostenrijk
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ambrosio F, Pasquarello A. Reactivity and energy level of a localized hole in liquid water. Phys Chem Chem Phys 2018; 20:30281-30289. [DOI: 10.1039/c8cp03682a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction and redox level of hole capture in liquid water from first principles.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Chaire de Simulation à l’Echelle Atomique (CSEA)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l’Echelle Atomique (CSEA)
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
12
|
Ab initio study of cationic water cluster (H 2 O) 9 + via particle swarm optimization algorithm. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Tang M, Hu CE, Lv ZL, Chen XR, Cai LC. Ab Initio Study of Ionized Water Radical Cation (H 2O) 8+ in Combination with the Particle Swarm Optimization Method. J Phys Chem A 2016; 120:9489-9499. [PMID: 27934325 DOI: 10.1021/acs.jpca.6b09866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The structures of cationic water clusters (H2O)8+ have been globally explored by the particle swarm optimization method in combination with quantum chemical calculations. Geometry optimization and vibrational analysis for the 15 most interesting clusters were computed at the MP2/aug-cc-pVDZ level and infrared spectrum calculation at MPW1K/6-311++G** level. Special attention was paid to the relationships between their configurations and energies. Both MP2 and B3LYP-D3 calculations revealed that the cage-like structure is the most stable, which is different from a five-membered ring lowest energy structure but agrees well with a cage-like structure in the literature. Furthermore, our obtained cage-like structure is more stable by 0.87 and 1.23 kcal/mol than the previously reported structures at MP2 and B3LYP-D3 levels, respectively. Interestingly, on the basis of their relative Gibbs free energies and the temperature dependence of populations, the cage-like structure predominates only at very low temperatures, and the most dominating species transforms into a newfound four-membered ring structure from 100 to 400 K, which can contribute greatly to the experimental infrared spectrum. By topological analysis and reduced density gradient analysis, we also investigated the structural characteristics and bonding strengths of these water cluster radical cations.
Collapse
Affiliation(s)
- Mei Tang
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University , Chengdu 610065, China
| | - Cui-E Hu
- College of Physics and Electronic Engineering, Chongqing Normal University , Chongqing 400047, China
| | - Zhen-Long Lv
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University , Chengdu 610065, China
| | - Xiang-Rong Chen
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University , Chengdu 610065, China
| | - Ling-Cang Cai
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics , Mianyang 621900, China
| |
Collapse
|
14
|
Affiliation(s)
- Daniel M. Chipman
- Radiation Laboratory, University of Notre Dame, Notre
Dame, Indiana 46556-5674, United States
| |
Collapse
|
15
|
Liu L, Hu CE, Tang M, Chen XR, Cai LC. Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H 2O) 6. J Chem Phys 2016; 145:154307. [PMID: 27782468 DOI: 10.1063/1.4964860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The low-lying isomers of cationic water cluster (H2O)6+ have been globally explored by using particle swarm optimization algorithm in conjunction with quantum chemical calculations. Compared with previous results, our searching method covers a wide range of structural isomers of (H2O)6+ and therefore turns out to be more effective. With these local minima, geometry optimization and vibrational analysis are performed for the most interesting clusters at second-order Møller-Plesset (MP2)/aug-cc-pVDZ level, and their energies are further refined at MP2/aug-cc-pVTZ and coupled-cluster theory with single, double, and perturbative triple excitations/aug-cc-pVDZ level. The interaction energies using the complete basis set limits at MP2 level are also reported. The relationships between their structure arrangement and their energies are discussed. Based on the results of thermal simulation, structural change from a four-numbered ring to a tree-like structure occurs at T ≈ 45 K, and the relative population of six lowest-free-energy isomers is found to exceed 4% at some point within the studied temperature range. Studies reveal that, among these six isomers, two new-found isomers constitute 10% of isomer population at 180 K, and the experimental spectra can be better explained with inclusions of the two isomers. The molecular orbitals for six representative cationic water clusters are also studied. Through topological and reduced density gradient analysis, we investigated the structural characteristics and the bonding strengths of these water cluster radical cations.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | - Cui-E Hu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China
| | - Mei Tang
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | - Xiang-Rong Chen
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | - Ling-Cang Cai
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China
| |
Collapse
|
16
|
|
17
|
Tachikawa H, Takada T. Ionization dynamics of the branched water cluster: A long-lived non-proton-transferred intermediate. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Inokuchi Y, Ebata T, Rizzo TR. UV and IR Spectroscopy of Cold H2O(+)-Benzo-Crown Ether Complexes. J Phys Chem A 2015; 119:11113-8. [PMID: 26491792 DOI: 10.1021/acs.jpca.5b07033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The H2O(+) radical ion, produced in an electrospray ion source via charge transfer from Eu(3+), is encapsulated in benzo-15-crown-5 (B15C5) or benzo-18-crown-6 (B18C6). We measure UV photodissociation (UVPD) spectra of the (H2O·B15C5)(+) and (H2O·B18C6)(+) complexes in a cold, 22-pole ion trap. These complexes show sharp vibronic bands in the 35 700-37 600 cm(-1) region, similar to the case of neutral B15C5 or B18C6. These results indicate that the positive charge in the complexes is localized on H2O, giving the forms H2O(+)·B15C5 and H2O(+)·B18C6, in spite of the fact that the ionization energy of B15C5 and B18C6 is lower than that of H2O. The formation of the H2O(+) complexes and the suppression of the H3O(+) production through the reaction of H2O(+) and H2O can be attributed to the encapsulation of hydrated Eu(3+) clusters by B15C5 and B18C6. On the contrary, the main fragment ions subsequent to the UV excitation of these complexes are B15C5(+) and B18C6(+) radical ions; the charge transfer occurs from H2O(+) to B15C5 and B18C6 after the UV excitation. The position of the band origin for the H2O(+)·B18C6 complex (36323 cm(-1)) is almost the same as that for Rb(+)·B18C6 (36315 cm(-1)); the strength of the intermolecular interaction of H2O(+) with B18C6 is similar to that of Rb(+). The spectral features of the H2O(+)·B15C5 complex also resemble those of the Rb(+)·B15C5 ion. We measure IR-UV spectra of these complexes in the CH and OH stretching region. Four conformers are found for the H2O(+)·B15C5 complex, but there is one dominant form for the H2O(+)·B18C6 ion. This study demonstrates the production of radical ions by charge transfer from multivalent metal ions, their encapsulation by host molecules, and separate detection of their conformers by cold UV spectroscopy in the gas phase.
Collapse
Affiliation(s)
- Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Lausanne CH-1015, Switzerland
| |
Collapse
|