1
|
Aziz MT, Naqvi SAR, Janjua MRSA, Alam M, Gill WA. Exploring the adsorption behavior of molecular hydrogen on CHA-zeolite by comparing the performance of various force field methods. RSC Adv 2023; 13:30937-30950. [PMID: 37876651 PMCID: PMC10591995 DOI: 10.1039/d3ra04262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Molecular hydrogen (H2) adsorption plays a crucial role in numerous applications, including hydrogen storage and purification processes. Understanding the interaction of H2 with porous materials is essential for designing efficient adsorption systems. In this study, we investigate H2 adsorption on CHA-zeolite using a combination of density functional theory (DFT) and force field-based molecular dynamics (MD) simulations. Firstly, we employ DFT calculations to explore the energetic properties and adsorption sites of H2 on the CHA-zeolite framework. The electronic structure and binding energies of H2 in various adsorption configurations are analyzed, providing valuable insights into the nature of the adsorption process. Subsequently, force field methods are employed to perform extensive MD simulations, allowing us to study the dynamic behavior of H2 molecules adsorbed on the CHA-zeolite surface. The trajectory analysis provides information on the diffusion mechanisms and mobility of H2 within the porous structure, shedding light on the transport properties of the adsorbed gas. Furthermore, the combination of DFT and MD results enables us to validate and refine the force field parameters used in simulations, improving the accuracy of the model, and enhancing our understanding of the H2-CHA interactions. Our comprehensive investigation into molecular hydrogen adsorption on CHA-zeolite using density functional theory and molecular dynamics simulations yields valuable insights into the fundamental aspects of the adsorption process. These findings contribute to the development of advanced hydrogen storage and separation technologies, paving the way for efficient and sustainable energy applications.
Collapse
Affiliation(s)
- Muhammad Tariq Aziz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | | | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Waqas Amber Gill
- Departamento de Química Física, Universidad de Valencia Avda Dr Moliner, 50, E-46100 Burjassot Valencia Spain
| |
Collapse
|
2
|
Dammak A, Raouafi F, Cavanna A, Rudolf P, di Caprio D, Sallet V, Madouri A, Jancu JM. Quantum tailoring of electronic properties in covalently functionalized graphene: application to ammonia gas detection. RSC Adv 2022; 12:36002-36011. [PMID: 36545063 PMCID: PMC9753900 DOI: 10.1039/d2ra06112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Functionalized graphene offers great potential in the field of rapid detection of gases at room temperature. We performed first-principles calculations to study the suitability of 4-sulfobenzenediazonium salts (4SBD) as bandgap modifier in graphene. The signature of unpaired spins is evidenced near the Fermi level owing to the symmetry breaking of graphene sublattices. 4SBD-chemisorbed on graphene is found to be electronically sensitive to the presence of ammonia NH3 with increasing gas concentration.
Collapse
Affiliation(s)
- A Dammak
- University of Carthage, IPEST, LPC2M Route de Sidi Bou Saïd 2075 La Marsa Tunisia
| | - F Raouafi
- University of Carthage, IPEST, LPC2M Route de Sidi Bou Saïd 2075 La Marsa Tunisia
| | - A Cavanna
- C2N, University of Paris-Saclay 10 Bd. Thomas Gobert 91120 Palaiseau France
| | - P Rudolf
- Surfaces and Thin Films Group, Zernike Institute for Advanced Materials, University of Groningen The Netherlands
| | - D di Caprio
- IRCP, Chimie ParisTech, University of PSL, CNRS 11 rue P. et M. Curie 75005 Paris France
| | - V Sallet
- GEMaC, Université Versailles St-Quentin-en-Yvelines France
| | - A Madouri
- C2N, University of Paris-Saclay 10 Bd. Thomas Gobert 91120 Palaiseau France
| | - J M Jancu
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082 F-35000 Rennes France
| |
Collapse
|
3
|
Wang Q, She W, Lu X, Li P, Sun Y, Liu X, Pan W, Duan K. The interaction of hyaluronic acid and graphene tuned by functional groups: A density functional study. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Haziri V, Berisha A, Podvorica FI. Electrochemical modification of platinum and glassy carbon surfaces with pyridine layers and their use as complexing agents for copper (II) ions. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe electrochemical grafting of the “in-situ” prepared diazopyridinium salt have permitted the attachment of pyridine moieties onto platinum and glassy carbon surfaces. The modification of the electrode surfaces is observed by a redox probe. The ability of the film for the complexation of copper (II) ions is demonstrated by square wave voltammetry. After 45 min accumulation of copper (II) ions onto the grafted electrode surfaces, the electrode signal obtained by square wave voltammetry measurement served to discriminate the adsorbed heavy metal ions. Such measurements showed that the grafted pyridine has the ability to display complexing behavior toward some heavy metal ions. DFT calculations support a strong binding of the pyridine moieties onto the Pt surface. The most favorable complexation mode of copper (II) ions as suggested from DFT is the bidentate complex. This strategy is vital in constructing a wide range of different electrochemical sensors.
Collapse
Affiliation(s)
- Veton Haziri
- Department of Chemistry, FNMS, University of Pristina “Hasan Prishtina”, 10000 Pristina, Pristina, Kosovo
| | - Avni Berisha
- Department of Chemistry, FNMS, University of Pristina “Hasan Prishtina”, 10000 Pristina, Pristina, Kosovo
| | - Fetah I. Podvorica
- Department of Chemistry, FNMS, University of Pristina “Hasan Prishtina”, 10000 Pristina, Pristina, Kosovo
| |
Collapse
|
5
|
Berisha A. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne - a MD study. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe mechanism of the adsorption and grafting of diazonium cations onto the surface of graphyne and graphdiyne was investigated using Density Functional Theory (DFT). The adsorption energy (both in vacuum and water as solvent) of the phenyl diazonium cation was evaluated at three different positions of the graphyne and graphdiyne surface. Moreover, the lowest energy adsorption sites were used to calculate and plot Non-covalent Interactions (NCI). The Bond Dissociation Energy (BDE) results (up to 66 kcal/mol) for the scission of the phenyl group support the remarkable stability of the grafted layer. As both of these materials are non-dispersible in aqueous solution, in this work through the use of Molecular Mechanics (MM) and Molecular Dynamics (MD) we explored also the effect of the grafted substituted aryl groups derived from aryldiazonium salts onto the solvation properties of these materials.
Collapse
Affiliation(s)
- Avni Berisha
- Department of Chemistry, FNMS, University of Pristina “ Hasan Prishtina”, 10000 Pristina, Pristina, Republic of Kosovo
| |
Collapse
|
6
|
Abstract
Understanding the grafting behavior of the aryldiazonium cations is of fundamental and also of practical importance for the vast number of applications that involve the use of modified graphene oxide (from simple adsorption process to electronic and photovoltaic applications). In this work, the mechanism of the adsorption and grafting of diazonium cations on the graphene oxide surface was investigated by the use of density functional theory. Two types of aryldiazonium cations, one bearing only phenyl ring and the other nitrophenyl, were selected as adsorbates/grafted moiety. By evaluating the adsorption energies at 7 different positions onto the graphene oxide both in the gaseous and solvent phase (using COSMO approach), the most probable adsorption sites were found. Moreover, the most stable adsorption sites were used to calculate and plot NCI (noncovalent interactions). The obtained results are important as they not only give molecular insights regarding the nature of the interaction and its dependence on the adsorption site of the graphene oxide surface but also on the activation energy for such a grafting reaction to take place, providing a mechanistic aspect to understand these grafting reactions.
Collapse
|
7
|
Haldar S, Mukherjee S, Singh CV. Hydrogen storage in Li, Na and Ca decorated and defective borophene: a first principles study. RSC Adv 2018; 8:20748-20757. [PMID: 35542354 PMCID: PMC9080804 DOI: 10.1039/c7ra12512g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Recently synthesized two-dimensional (2D) borophene possesses unique structural, mechanical, electrical and optical properties. Herein, we present a comprehensive study of H2 storage in alkali metal decorated and defect containing 2D borophene using density functional theory calculations. While the adsorption of H2 over pristine borophene was found to be weak with a binding energy of -0.045 eV per H2, metal decoration and point defects enhanced the adsorption strength significantly. Interestingly, the magnitudes of binding energy for a single H2 molecule over Li, Na and Ca decorated borophene were found to increase up to -0.36, -0.34, and -0.12 eV per H2, respectively. On the other hand, while the binding energy of one H2 molecule over the borophene substrate containing a single vacancy (SV) was only -0.063 eV per H2, similar to that of phosphorene, the binding energy increased to an enormous -0.69 eV per H2 over borophene containing a double vacancy (DV). To gain further insight into the H2 adsorption process and identify sources of charge transfer, differential charge densities and projected density of states were calculated. Significant charge accumulation and depletion caused strong polarization of the H2 molecules. Finally, Na, Li and Ca decorated borophene yielded the gravimetric densities 9.0%, 6.8%, and 7.6%, respectively. The gravimetric density of the borophene containing a DV was found to be the highest, a staggering 9.2%, owing to increased interactions between DV borophene and the H2 molecules. These results suggest that borophene can be an effective substrate for H2 storage by carefully engineering it with metal decoration and point defects.
Collapse
Affiliation(s)
- Sandip Haldar
- Department of Materials Science and Engineering, University of Toronto Toronto ON M5S 3E4 Canada
| | - Sankha Mukherjee
- Department of Materials Science and Engineering, University of Toronto Toronto ON M5S 3E4 Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto Toronto ON M5S 3E4 Canada
- Department of Mechanical and Industrial Engineering, University of Toronto Toronto ON M5S 3E4 Canada
| |
Collapse
|
8
|
Karlický F, Otyepková E, Lo R, Pitoňák M, Jurečka P, Pykal M, Hobza P, Otyepka M. Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite. J Chem Theory Comput 2017; 13:1328-1340. [PMID: 28145699 PMCID: PMC5352977 DOI: 10.1021/acs.jctc.6b01130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 11/28/2022]
Abstract
Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from -7 to -13 kcal/mol and are by 1-2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy.
Collapse
Affiliation(s)
- František Karlický
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Eva Otyepková
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166
10 Prague 6, Czech Republic
| | - Michal Pitoňák
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia
- Computing Center
of the Slovak Academy of Sciences, Dúbravská cesta č. 9, 845 35 Bratislava, Slovakia
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| | - Pavel Hobza
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166
10 Prague 6, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký
University Olomouc, tř.
17. listopadu 12, 77 146 Olomouc, Czech Republic
| |
Collapse
|
9
|
Pykal M, Jurečka P, Karlický F, Otyepka M. Modelling of graphene functionalization. Phys Chem Chem Phys 2016; 18:6351-72. [DOI: 10.1039/c5cp03599f] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This perspective describes the available theoretical methods and models for simulating graphene functionalization based on quantum and classical mechanics.
Collapse
Affiliation(s)
- Martin Pykal
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - František Karlický
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| |
Collapse
|
10
|
Strauss V, Schäfer RA, Hauke F, Hirsch A, Guldi DM. Polyhydrogenated Graphene: Excited State Dynamics in Photo- and Electroactive Two-Dimensional Domains. J Am Chem Soc 2015; 137:13079-86. [DOI: 10.1021/jacs.5b07896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Volker Strauss
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Ricarda A. Schäfer
- Department
of Chemistry and Pharmacy and Joint Institute of Advanced Materials
and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| | - Frank Hauke
- Department
of Chemistry and Pharmacy and Joint Institute of Advanced Materials
and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| | - Andreas Hirsch
- Department
of Chemistry and Pharmacy and Joint Institute of Advanced Materials
and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054 Erlangen, Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|