1
|
de Kroon RR, Frerichs NM, Struys EA, de Boer NK, de Meij TGJ, Niemarkt HJ. The Potential of Fecal Volatile Organic Compound Analysis for the Early Diagnosis of Late-Onset Sepsis in Preterm Infants: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3162. [PMID: 38794014 PMCID: PMC11124895 DOI: 10.3390/s24103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.
Collapse
Affiliation(s)
- Rimke R. de Kroon
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nina M. Frerichs
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medisch Centrum, De Run 4600, 5504 DB Veldhoven, The Netherlands
- Department of Electrical Engineering, TU Eindhoven, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Li F, Zheng Y, Zhao C, Zhu J, Hang Y, Fang Y, Hu L. GC-IMS facilitates identification of carbapenem-resistant Klebsiella pneumoniae in simulated blood cultures. AMB Express 2024; 14:40. [PMID: 38656563 PMCID: PMC11043319 DOI: 10.1186/s13568-024-01708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
This study aimed to identify carbapenem-resistant Klebsiella pneumoniae (CRKP) based on changes in levels of its volatile organic compounds (VOCs) in simulated blood cultures (BCs) using the gas chromatography-ion mobility spectrometry (GC-IMS) technique. A comprehensive analysis of volatile metabolites produced by Klebsiella pneumoniae (K. pneumoniae) in BC bottles was conducted using GC-IMS. Subsequently, the released VOCs were analyzed to examine differences in VOC release between CRKP and carbapenem-susceptible Klebsiella pneumoniae (CSKP). A total of 54 VOCs were detected, of which 18 (6 VOCs found in both monomer and dimer forms) were successfully identified. The VOCs produced by K. pneumoniae in BC bottles (BacT/ALERT® SA) were primarily composed of organic acids, alcohols, esters, and ketones. The content of certain VOCs was significantly different between CRKP and CSKP after the addition of imipenem (IPM). Moreover, the inclusion of carbapenemase inhibitors facilitated the identification of carbapenemase-producing K. pneumoniae based on the variations in VOCs. This study demonstrates the utility of GC-IMS technology in identifying CRKP, and reveals that changes in VOCs are closely related to the growth and metabolism of K. pneumoniae, indicating that they can be leveraged to promote early identification of CRKP bacteremia. However, further in-depth studies and experiments are needed to validate our findings.
Collapse
Affiliation(s)
- Fuxing Li
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunwei Zheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chuwen Zhao
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Junqi Zhu
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Youling Fang
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Hu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J Pharm Anal 2024; 14:100898. [PMID: 38634063 PMCID: PMC11022102 DOI: 10.1016/j.jpha.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
Collapse
Affiliation(s)
- Karolina Żuchowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
Qiu L, Psimos MD, Cooks RG. Spontaneous Oxidation of Aromatic Sulfones to Sulfonic Acids in Microdroplets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1362-1367. [PMID: 35312307 DOI: 10.1021/jasms.2c00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactions in microdroplets can be accelerated and can present unique chemistry compared to reactions in bulk solution. Here, we report the accelerated oxidation of aromatic sulfones to sulfonic acids in microdroplets under ambient conditions without the addition of acid, base, or catalyst. The experimental data suggest that the water radical cation, (H2O)+•, derived from traces of water in the solvent, is the oxidant. The substrate scope of the reaction indicates the need for a strong electron-donating group (e.g., p-hydroxyl) in the aromatic ring. An analogous oxidation is observed in an aromatic ketone with benzoic acid production. The shared mechanism is suggested to involve field-assisted ionization of water at the droplet/air interface, its reaction with the sulfone (M) to form the radical cation adduct, (M + H2O)+•, followed by 1,2-aryl migration and C-O cleavage. A remarkably high reaction rate acceleration (∼103) and regioselectivity (∼100-fold) characterize the reaction.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael D Psimos
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Identification of volatile compounds from bacteria by spectrometric methods in medicine diagnostic and other areas: current state and perspectives. Appl Microbiol Biotechnol 2021; 105:6245-6255. [PMID: 34415392 PMCID: PMC8377328 DOI: 10.1007/s00253-021-11469-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 10/25/2022]
Abstract
Diagnosis of bacterial infections until today mostly relies on conventional microbiological methods. The resulting long turnaround times can lead to delayed initiation of adequate antibiotic therapy and prolonged periods of empiric antibiotic therapy (e.g., in intensive care medicine). Therewith, they contribute to the mortality of bacterial infections and the induction of multidrug resistances. The detection of species specific volatile organic compounds (VOCs) emitted by bacteria has been proposed as a possible diagnostic approach with the potential to serve as an innovative point-of-care diagnostic tool with very short turnaround times. A range of spectrometric methods are available which allow the detection and quantification of bacterial VOCs down to a range of part per trillion. This narrative review introduces the application of spectrometric analytical methods for the purpose of detecting VOCs of bacterial origin and their clinical use for diagnosing different infectious conditions over the last decade. KEY POINTS: • Detection of VOCs enables bacterial differentiation in various medical conditions. • Spectrometric methods may function as point-of-care diagnostics in near future.
Collapse
|
6
|
Zhang X, Ren X, Chingin K, Xu J, Yan X, Chen H. Mass spectrometry distinguishing C=C location and cis/trans isomers: A strategy initiated by water radical cations. Anal Chim Acta 2020; 1139:146-154. [DOI: 10.1016/j.aca.2020.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
|
7
|
WANG J, HUANG LJ, XU ZJ, LIU Y, XU JJ, CHEN HY. Rapid Analysis of Bacteremia by Membrane Extraction Electrospray Ionization Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60050-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Elmassry MM, Piechulla B. Volatilomes of Bacterial Infections in Humans. Front Neurosci 2020; 14:257. [PMID: 32269511 PMCID: PMC7111428 DOI: 10.3389/fnins.2020.00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sense of smell in humans has the capacity to detect certain volatiles from bacterial infections. Our olfactory senses were used in ancient medicine to diagnose diseases in patients. As humans are considered holobionts, each person's unique odor consists of volatile organic compounds (VOCs, volatilome) produced not only by the humans themselves but also by their beneficial and pathogenic micro-habitants. In the past decade it has been well documented that microorganisms (fungi and bacteria) are able to emit a broad range of olfactory active VOCs [summarized in the mVOC database (http://bioinformatics.charite.de/mvoc/)]. During microbial infection, the equilibrium between the human and its microbiome is altered, followed by a change in the volatilome. For several decades, physicians have been trying to utilize these changes in smell composition to develop fast and efficient diagnostic tools, particularly because volatiles detection is non-invasive and non-destructive, which would be a breakthrough in many therapies. Within this review, we discuss bacterial infections including gastrointestinal, respiratory or lung, and blood infections, focusing on the pathogens and their known corresponding volatile biomarkers. Furthermore, we cover the potential role of the human microbiota and their volatilome in certain diseases such as neurodegenerative diseases. We also report on discrete mVOCs that affect humans.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Zhong Q, Cheng F, Liang J, Wang X, Chen Y, Fang X, Hu L, Hang Y. Profiles of volatile indole emitted by Escherichia coli based on CDI-MS. Sci Rep 2019; 9:13139. [PMID: 31511564 PMCID: PMC6739388 DOI: 10.1038/s41598-019-49436-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli is an important pathogen of nosocomial infection in clinical research, Thus, exploring new methods for the rapid detection of this pathogen is urgent. We reported the early release of molecular volatile indole vapour of E. coli cultures and blood cultures analyzed by direct atmospheric corona discharge ionization mass spectrometry (CDI-MS). The concentration of indole in E. coli cultures remarkably increases during the early log and lag phases of bacterial growth, thereby enabling early detection. Technical replicates were cultivated for 3 days for reference diagnosis using current conventional bacteraemia detection. A reference MS screen of common microbes from other genera confirmed that the peaks at m/z 116 signal corresponded to indole were specifically present in E. coli. Our results indicated that volatile indole based on CDI-MS without the need for any sample pretreatment is highly suitable for the reliable and cost-efficient differentiation of E. coli, especially for bacteraemia in humans.
Collapse
Affiliation(s)
- Qiaoshi Zhong
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Feng Cheng
- Department of clinical laboratory, Jiangxi Chest (third people) Hospital, Nanchang, 330006, P.R. China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Xiaozhong Wang
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Yanhui Chen
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Xueyao Fang
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China
| | - Longhua Hu
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China.
| | - Yaping Hang
- Department of clinical laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
10
|
Baptista I, Santos M, Rudnitskaya A, Saraiva JA, Almeida A, Rocha SM. A comprehensive look into the volatile exometabolome of enteroxic and non-enterotoxic Staphylococcus aureus strains. Int J Biochem Cell Biol 2019; 108:40-50. [PMID: 30648622 DOI: 10.1016/j.biocel.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/06/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
Staphylococcal food poisoning is a disease that originates significant health and economic losses and is caused by Staphylococcus aureus strains able to produce enterotoxins. The aim of this work is to go further on the study of the volatile exometabolome of S. aureus using an advanced gas chromatographic technique. Enterotoxic and non-enterotoxic strains were assessed. The volatile exometabolome profile comprised 240 volatiles belonging to ten chemical families. This volatiles were mainly by-products of branched-chain amino acids and methionine degradation, pyruvate metabolism, diacetyl pathway, oxidative stress and carotenoid cleavage. Metabolites released by the first two pathways were produced in higher contents by the enterotoxic strains. This study add further insights to S. aureus volatile exometabolome, and also shows that by applying it, it is possible to distinguish strains of S. aureus by the number of produced enterotoxins, which is especially important from the food safety point of view.
Collapse
Affiliation(s)
- Inês Baptista
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Magda Santos
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Alisa Rudnitskaya
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Jorge A Saraiva
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sílvia M Rocha
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Zhang X, Ji Y, Zhang Y, Liu F, Chen H, Liu J, Handberg ES, Chagovets VV, Chingin K. Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. Anal Bioanal Chem 2018; 411:4103-4112. [DOI: 10.1007/s00216-018-1487-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 11/28/2022]
|
12
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
13
|
Zhang X, Chingin K, Zhong D, Luo L, Frankevich V, Chen H. Deciphering the chemical origin of the semen-like floral scents in three angiosperm plants. PHYTOCHEMISTRY 2018; 145:137-145. [PMID: 29127940 DOI: 10.1016/j.phytochem.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The chemical origin and biological role of distinct semen-like odor occasionally found in some flowers are very curious but remain scarcely studied. Here, we used direct ambient corona discharge ionization mass spectrometry (MS) to study the volatile chemical composition behind the semen-like odor emitted by the fresh flowers of Photinia serrulata, Castanopsis sclerophylla and Stemona japonica without any chemical pretreatment. Chemical identification was performed using high-resolution MS analysis in combination with tandem MS analysis and whenever possible was confirmed by the analysis of standard reference compounds. A total of 19 compounds, mostly belonging to nitrogenous volatiles, were identified in P. serrulata, C. sclerophylla, and S. japonica flowers, 1-pyrroline, 1-piperideine, 2-pyrrolidone, and phenethylamine being common in all the three studied species. Several lines of evidence indicate that the major component responsible for the semen-like odor is most likely 1-pyrroline. 1-Pyrroline is most probably formed via the oxidative deamination of putrescine, as indicated by the observation of signal from 4-amino-butanal intermediate. Flower visitation observations suggest that the released volatiles serve to attract dipterans, including Syrphidae, Calliphoridae, and Muscidae. On the analytical side, the comparison of our results to earlier studies also indicate that compared to the traditional GC-MS approach the direct corona discharge ionization mass spectrometry provides more sensitive detection of VOCs with high proton affinity, in particular volatile amines, and therefore can be used to complement traditional GC-MS approach for the highest chemical coverage of VOC analysis.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, PR China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, PR China.
| | - Dacai Zhong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, PR China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, PR China
| | - Vladimir Frankevich
- Department of System Biology in Reproduction, Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology", Moscow, 117997, Russia
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, PR China
| |
Collapse
|
14
|
On the chemistry of 1-pyrroline in solution and in the gas phase. Sci Rep 2017; 7:7675. [PMID: 28794423 PMCID: PMC5550421 DOI: 10.1038/s41598-017-08217-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
1-Pyrroline has a highly characteristic odor, which is employed by living organisms for chemical signaling and other purposes, but the mechanism whereby this odor is formed remains poorly understood. Here we used a combination of ambient mass spectrometry (AMS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally address the mechanistic aspects of 1-pyrroline volatility and other controversies regarding the chemistry of this compound. Our results indicate that in solution the volatility of the monomer species is significantly higher than that of the trimer species, and 1-pyrroline is evaporated mainly in its monomer state. Neat 1-pyrroline is essentially the pure trimer and displays ca. 100-fold lower evaporation rate than the monomer state in solution. In the gas-phase the trimer species is irreversibly decomposed into monomer species. Under equilibrium conditions the vapor of 1-pyrroline entirely consists of monomer species. The evaporation rate of 1-pyrroline in water has a step-wise dependence on the solution pH, the abrupt increase in volatility (>1,000-fold) occurring around the pKa value of 1-pyrroline (6.8). The pronounced step-wise dependence of 1-pyrroline volatility around neutral pH may also be an important evolutionary factor allowing living systems to regulate the odor strength from very weak to very strong with minimal efforts.
Collapse
|
15
|
Lough F, Perry JD, Stanforth SP, Dean JR. Detection of exogenous VOCs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Hang Y, Chingin K, Liang J, Wang X, Hu L. Fast detection of volatile organic compounds from Staphylococcal blood cultures by CDI-MS. RSC Adv 2017. [DOI: 10.1039/c7ra01815k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapid recognition of Staphylococcal bacteremia in humans is a serious challenge in clinical research.
Collapse
Affiliation(s)
- Yaping Hang
- Department of Clinical Laboratory
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China Institute of Technology
- Nanchang 330013
- P. R. China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China Institute of Technology
- Nanchang 330013
- P. R. China
| | - Xiaozhong Wang
- Department of Clinical Laboratory
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| | - Longhua Hu
- Department of Clinical Laboratory
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| |
Collapse
|
17
|
Chingin K, Liang J, Liu Y, Chen L, Wu X, Hu L, Ouyang Y. Rapid detection of Mycobacterium tuberculosis cultures by direct ambient corona discharge ionization mass spectrometry of volatile metabolites. RSC Adv 2016. [DOI: 10.1039/c6ra12107a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
High-throughput TB screening with high chemical specificity is achieved using direct ambient corona discharge ionization MS analysis of volatile metabolites.
Collapse
Affiliation(s)
- Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang City
- P. R. China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang City
- P. R. China
| | - Yanling Liu
- The Second Affiliated Hospital of Nanchang University
- Nanchang City
- P. R. China
| | - Linfei Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang City
- P. R. China
| | - Xiaoping Wu
- Department of Infections, the First Affiliated Hospital of Nanchang University
- Nanchang City
- P. R. China
| | - Longhua Hu
- The Second Affiliated Hospital of Nanchang University
- Nanchang City
- P. R. China
| | - Yongzhong Ouyang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang City
- P. R. China
| |
Collapse
|
18
|
Hu L, Liang J, Chingin K, Hang Y, Wu X, Chen H. Early release of 1-pyrroline by Pseudomonas aeruginosa cultures discovered using ambient corona discharge ionization mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c5ra24594j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1-Pyrroline detected by ambient mass spectrometry is suggested as a potential volatile biomarker for early identification of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Longhua Hu
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yaping Hang
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Xiaoping Wu
- Department of Infections
- The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|