1
|
Burmakina GV, Zimonin DV, Verpekin VV, Sychev VV, Rubaylo AI. A Comparative Study of Electrochemical Reduction of Levulinic Acid on Various Electrodes in Organic Solvents. Chemphyschem 2024; 25:e202300900. [PMID: 38856848 DOI: 10.1002/cphc.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electrochemical reduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electrochemical reduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA on a certain electrode. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.
Collapse
Affiliation(s)
- Galina V Burmakina
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, 50-24, Krasnoyarsk, 660036, Russia
| | - Dmitry V Zimonin
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, 50-24, Krasnoyarsk, 660036, Russia
| | - Victor V Verpekin
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, 50-24, Krasnoyarsk, 660036, Russia
| | - Valentin V Sychev
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, 50-24, Krasnoyarsk, 660036, Russia
| | - Anatoly I Rubaylo
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok, 50-24, Krasnoyarsk, 660036, Russia
| |
Collapse
|
2
|
Ding Y, Sun J, Hu R, He D, Qiu X, Luo C, Jiang P. Highly efficient CuNi-ZrO 2 nanocomposites for selective hydrogenation of levulinic acid to γ-valerolactone. RSC Adv 2024; 14:27481-27487. [PMID: 39221133 PMCID: PMC11360431 DOI: 10.1039/d4ra04960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
CuNi-ZrO2 nanocomposites were prepared by a simple coprecipitation technique of copper, nickel and zirconium ions with potassium carbonate. The structures of the nanocomposites were characterized by N2 physical adsorption, XRD, H2-TPR and STEM-EDS. The Cu0.05Ni0.45-ZrO2 nanocomposite showed outstanding catalytic performance in hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), especially NaOH solution (0.5 mol L-1) as a solvent. 100% LA conversion and > 99.9% GVL selectivity are achieved over Cu0.05Ni0.45-ZrO2 catalyst at 200 °C, 3 MPa for 1.5 h. Characterization results suggest that the excellent reactivity of the Cu0.05Ni0.45-ZrO2 may be due to a better reducibility of nickel oxide in the CuONiO-ZrO2, dispersion of Ni in the Cu0.05Ni0.45-ZrO2 compared to nickel oxide in the NiO-ZrO2 and Ni in the Ni0.5-ZrO2 and promotion of OH-. The results demonstrate that the Cu0.05Ni0.45-ZrO2 nanocomposite has potential to realize high efficiency and low-cost synthesis of liquid fuels from biomass.
Collapse
Affiliation(s)
- Yufang Ding
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Junli Sun
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Rongqi Hu
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Daiping He
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Xulin Qiu
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Chengying Luo
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| | - Ping Jiang
- Chongqing Key Lab of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
3
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
4
|
To DT, Chiang YC, Lee JF, Chen CL, Lin YC. Nitrogen-Doped Co Catalyst Derived from Carbothermal Reduction of Cobalt Phyllosilicate and its Application in Levulinic Acid Hydrogenation to γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03784-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Singh G, Gahtori J, Poddar MK, Samanta C, Bhattacharya S, Biradar AV, Bordoloi A. Studies on Synthesis of Sub‐Nanometre Size Pt Particles Stabilized on ZrO
2
Matrix for Formic Acid Mediated Synthesis of γ‐Valerolactone. ChemistrySelect 2022. [DOI: 10.1002/slct.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gurmeet Singh
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jyoti Gahtori
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mukesh Kumar Poddar
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - Chanchal Samanta
- />Corporate R&D Centre, Bharat Petroleum Corporation Limited Greater Noida 201306 India
| | - Sumantra Bhattacharya
- Department of Chemistry National Institute of Technology Sikkim. Barfung Block Ravangla South Sikkim 737139 India
| | - Ankush V. Biradar
- CSIR- Central Salt & Marine Chemicals Research Institute Bhavnagar India
| | - Ankur Bordoloi
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| |
Collapse
|
6
|
Xu F, Liu C, Li JX, Zhan C, Xun Q, Zhang W, Xing W, Chang GG. Hierarchically porous single catalyst Ru/HPW/UiO-66 with synergistic acid/metal sites for one-pot catalytic synthesis of γ–Valerolactone. NEW J CHEM 2022. [DOI: 10.1039/d2nj02266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-valerolactone (GVL) is an important lignocellulosic platform molecule with huge potential for various industrial and chemical applications, which is usually produced by using Levulinic acid (LA) or its esters as...
Collapse
|
7
|
Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O'Shea JN, Rees NH. Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphine oxide-decorated polymer immobilized ionic liquid stabilized RuNPs catalyse the hydrogenation of aryl ketones with remarkable selectivity for the CO bond, complete hydrogenation to the cyclohexylalcohol and hydrogenation of levulinic acid to γ-valerolactone.
Collapse
Affiliation(s)
- S. Doherty
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - J. G. Knight
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. Backhouse
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. S. T. Tran
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - R. Paterson
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - F. Stahl
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - H. Y. Alharbi
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - T. W. Chamberlain
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. A. Bourne
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - R. Stones
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - A. Griffiths
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - J. P. White
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - Z. Aslam
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Land Leeds, LS2 9JT, UK
| | - C. Hardare
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - H. Daly
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, The Mill, Sackville Street Campus, Manchester, M13 9PL, UK
| | - J. Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - R. H. Temperton
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - J. N. O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - N. H. Rees
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
8
|
Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020; 13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
Abstract
As one of the most promising biomass-based platform molecules, γ-valerolactone (GVL) can be synthesized from a variety of lignocellulosic feedstocks through different hydrogen supply pathways. Among these transformation routes, the hydrogenation of levulinic acid (LA) to GVL by using formic acid (FA) as the internal hydrogen source is regarded as a critical path for the sustainable development of renewable energy systems. Although a large number of studies on the synthesis of GVL have been reported, the FA/LA catalytic system has not been interpreted as thoroughly as it should be. In this Minireview, core concerns are focused on key issues and their effects in this FA/LA catalytic system. The catalytic mechanism, together with competitive adsorption behavior between FA and LA on heterogeneous catalysts, is presented. The effects of active metal species and catalyst supports on the overall catalytic performance are summarized, and the influences of key condition parameters, including the time, temperature, FA/LA molar ratios, and aqueous solvent, are discussed. In particular, impacts and improvements of coke deposition and metal leaching, which could greatly affect the catalyst stability, are analyzed in detail. Additionally, several feasible suggestions for the enhancement of the catalytic efficiency and stability are also proposed.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hui Bai
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Unravel the surface active sites on Cu/MgLaO solid base catalyst by DRIFT spectroscopy and adsorption techniques for the synthesis of triazoles by click reaction. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Yu Z, Lu X, Xiong J, Ji N. Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. CHEMSUSCHEM 2019; 12:3915-3930. [PMID: 31270936 DOI: 10.1002/cssc.201901522] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Valerate esters (VAEs) commonly derived from levulinic acid (LA), which is deemed as one of the most promising biomass platform molecules, have been hailed as "valeric biofuels" in recent years. The cascade transformation of LA to VAEs consists of a series of acid- and metal-catalyzed processes alternately, in which heterogeneous bifunctional catalysts are required for better catalytic performance. The transformation pathway from LA to VAEs is presented, and bifunctional catalytic systems for the cascade transformation of LA into valeric acid (VA) and its esters, as well as one-pot conversion processes, are reviewed. Additionally, effects of metal and acid sites on the catalytic performance are discussed in detail. Impacts of and improvements to coke deposition, which is determined to be the primary reason for the reduction in catalytic activity, are also analyzed. Finally, feasible suggestions are proposed for enhanced catalytic performance and a reduction in overall costs.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, PR China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, PR China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
12
|
Wojciechowska J, Jędrzejczyk M, Grams J, Keller N, Ruppert AM. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO 2 Supported Ru Catalysts. CHEMSUSCHEM 2019; 12:639-650. [PMID: 30350463 DOI: 10.1002/cssc.201801974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Calcium-modified titania supported Ru catalysts were synthesized and evaluated for the hydrogenation of levulinic acid with formic acid as an internal hydrogen source and water as a green solvent. A new elegant photoassisted method was developed for the synthesis of uniform-size and evenly distributed Ru particles on the titania surface. Compared with the counterpart catalysts prepared by classical wet impregnation, enhanced levulinic acid conversion and γ-valerolactone yield were obtained and further improved through modification of the support by introduction of calcium into the titania support. This synthesis approach resulted in a change of the surface and bulk properties of the support, namely a decrease in the anatase crystallite size and the formation of a new calcium titanate phase. As a consequence, the properties of the catalysts were modified, and smaller ruthenium particles that had stronger interactions with the support were obtained. This affected the strength of the CO adsorption on the catalyst surface and facilitated the reaction performance. The optimum size of Ru particles that allowed for most efficient levulinic acid conversion was established.
Collapse
Affiliation(s)
- Joanna Wojciechowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Marcin Jędrzejczyk
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| | - Jacek Grams
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
13
|
Promoted catalytic performance of Ni-SBA-15 catalysts by modifying with Fe and Cu for hydrogenation of levulinic acid to gamma-valerolactone. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017; 10:1720-1732. [PMID: 28328085 DOI: 10.1002/cssc.201601769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Indexed: 06/06/2023]
Abstract
To achieve a higher activity and reusability of a Ru-based catalyst, Ru nanoparticles were embedded in N-doped mesoporous carbon through a hard-template method. The catalyst showed excellent catalytic performance (314 h-1 turnover frequency) and recyclability (reusable five times with 3 % activity loss) for the hydrogenolysis of levulinic acid to γ-valerolactone. Compared with the mesoporous carbon without N-doping and conventional activated carbon, the introduction of N-dopant effectively improved the dispersion of Ru nanoparticles, decreased the average size of Ru nanoparticles to as small as 1.32 nm, and improved the adsorption of levulinic acid, which contributed to the increase in the activity of the catalyst. Additionally, the embedding method increased the interaction between Ru nanoparticles and carbon support in contrast with the conventional impregnation method, thus preventing the Ru nanoparticles from migration, aggregation, and leaching from the carbon surface and therefore increasing the reusability of the catalyst.
Collapse
Affiliation(s)
- Zuojun Wei
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Jiongtao Lou
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Chuanmin Su
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Dechao Guo
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, P.R. China
| | - Yingxin Liu
- Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Xiacheng District, Hangzhou, 310014, P.R. China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 510 E. Tyler Mall, Tempe, AZ, 85287 ENGRC 279, USA
| |
Collapse
|
15
|
Patil NM, Bhanage BM. Greener, Recyclable, and Reusable Ruthenium(III) Chloride/Polyethylene Glycol/Water System for the Selective Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone. ChemCatChem 2016. [DOI: 10.1002/cctc.201600872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nilesh M. Patil
- Department of Chemistry; Institute of Chemical Technology; Matunga Mumbai 400019 India
| | | |
Collapse
|
16
|
Gold-iridium catalysts for the hydrogenation of biomass derived products. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62512-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Zhang J, Xie B, Wang L, Yi X, Wang C, Wang G, Dai Z, Zheng A, Xiao FS. Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones. ChemCatChem 2016. [DOI: 10.1002/cctc.201600739] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Zhang
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
| | - Bin Xie
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
- Petrochina Petrochemical Research Institute; Beijing 102206 P.R. China
| | - Liang Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan 430071 P.R. China
| | - Chengtao Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
| | - Guoxiong Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
| | - Zhifeng Dai
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan 430071 P.R. China
| | - Feng-Shou Xiao
- Key Laboratory of Applied Chemistry of Zhejiang Province; Department of Chemistry; Zhejiang University; Hangzhou 310028 P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
18
|
Insights into the selective hydrogenation of levulinic acid to γ-valerolactone using supported mono- and bimetallic catalysts. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rodiansono R, Astuti MD, Hara T, Ichikuni N, Shimazu S. Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01731a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient hydrogenation of levulinic acid (LA) into γ-valerolactone (GVL) in water using supported Ni–Sn(1.4)/AlOH consisting of Ni3Sn2 alloy species was achieved with high selectivity towards GVL and the catalyst could be reused without any significant loss of activity and selectivity.
Collapse
Affiliation(s)
| | - Maria Dewi Astuti
- Department of Chemistry
- Lambung Mangkurat University
- Banjarbaru 70714
- Indonesia
| | - Takayoshi Hara
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| | | | - Shogo Shimazu
- Graduate School of Engineering
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
20
|
Jones DR, Iqbal S, Ishikawa S, Reece C, Thomas LM, Miedziak PJ, Morgan DJ, Edwards JK, Bartley JK, Willock DJ, Hutchings GJ. The conversion of levulinic acid into γ-valerolactone using Cu–ZrO2 catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00382f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Cu–ZrO2 catalysts prepared by a co-precipitation method were studied for the hydrogenation of levulinic acid to give γ-valerolactone (GVL).
Collapse
Affiliation(s)
| | | | - Satoshi Ishikawa
- Cardiff Catalysis Institute
- Cardiff
- UK
- Catalysis Research Centre
- Hokkaido University
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Villa A, Schiavoni M, Chan-Thaw CE, Fulvio PF, Mayes RT, Dai S, More KL, Veith GM, Prati L. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. CHEMSUSCHEM 2015; 8:2520-2528. [PMID: 26089180 DOI: 10.1002/cssc.201500331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1 % Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of S-containing groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 °C and 7 bar H2 ) the catalyst shows high selectivity to γ-valerolactone (GVL; >95 %) and high stability on recycling. However, under more severe conditions (200 °C and p H 2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.
Collapse
Affiliation(s)
- Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano via Golgi 19, 20133 Milano (Italy)
| | - Marco Schiavoni
- Dipartimento di Chimica, Università degli Studi di Milano via Golgi 19, 20133 Milano (Italy)
| | - Carine E Chan-Thaw
- Dipartimento di Chimica, Università degli Studi di Milano via Golgi 19, 20133 Milano (Italy)
| | - Pasquale F Fulvio
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (USA)
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (USA)
| | - Richard T Mayes
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (USA)
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (USA)
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996 (USA)
| | - Karren L More
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Gabriel M Veith
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Laura Prati
- Dipartimento di Chimica, Università degli Studi di Milano via Golgi 19, 20133 Milano (Italy).
| |
Collapse
|