• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4673303)   Today's Articles (6082)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Burmakina GV, Zimonin DV, Verpekin VV, Sychev VV, Rubaylo AI. A Comparative Study of Electrochemical Reduction of Levulinic Acid on Various Electrodes in Organic Solvents. Chemphyschem 2024;25:e202300900. [PMID: 38856848 DOI: 10.1002/cphc.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
2
Ding Y, Sun J, Hu R, He D, Qiu X, Luo C, Jiang P. Highly efficient CuNi-ZrO2 nanocomposites for selective hydrogenation of levulinic acid to γ-valerolactone. RSC Adv 2024;14:27481-27487. [PMID: 39221133 PMCID: PMC11360431 DOI: 10.1039/d4ra04960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]  Open
3
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023;123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
4
To DT, Chiang YC, Lee JF, Chen CL, Lin YC. Nitrogen-Doped Co Catalyst Derived from Carbothermal Reduction of Cobalt Phyllosilicate and its Application in Levulinic Acid Hydrogenation to γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03784-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
5
Singh G, Gahtori J, Poddar MK, Samanta C, Bhattacharya S, Biradar AV, Bordoloi A. Studies on Synthesis of Sub‐Nanometre Size Pt Particles Stabilized on ZrO 2 Matrix for Formic Acid Mediated Synthesis of γ‐Valerolactone. ChemistrySelect 2022. [DOI: 10.1002/slct.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
6
Xu F, Liu C, Li JX, Zhan C, Xun Q, Zhang W, Xing W, Chang GG. Hierarchically porous single catalyst Ru/HPW/UiO-66 with synergistic acid/metal sites for one-pot catalytic synthesis of γ–Valerolactone. NEW J CHEM 2022. [DOI: 10.1039/d2nj02266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Doherty S, Knight JG, Backhouse T, Tran TST, Paterson R, Stahl F, Alharbi HY, Chamberlain TW, Bourne RA, Stones R, Griffiths A, White JP, Aslam Z, Hardare C, Daly H, Hart J, Temperton RH, O'Shea JN, Rees NH. Highly efficient and selective aqueous phase hydrogenation of aryl ketones, aldehydes, furfural and levulinic acid and its ethyl ester catalyzed by phosphine oxide-decorated polymer immobilized ionic liquid-stabilized ruthenium nanoparticles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
8
Surface interactions with the metal oxide surface control Ru nanoparticle formation and catalytic performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
9
Yu Z, Lu X, Xiong J, Li X, Bai H, Ji N. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. CHEMSUSCHEM 2020;13:2916-2930. [PMID: 32153131 DOI: 10.1002/cssc.202000175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Indexed: 06/10/2023]
10
Unravel the surface active sites on Cu/MgLaO solid base catalyst by DRIFT spectroscopy and adsorption techniques for the synthesis of triazoles by click reaction. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Yu Z, Lu X, Xiong J, Ji N. Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. CHEMSUSCHEM 2019;12:3915-3930. [PMID: 31270936 DOI: 10.1002/cssc.201901522] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 06/09/2023]
12
Wojciechowska J, Jędrzejczyk M, Grams J, Keller N, Ruppert AM. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. CHEMSUSCHEM 2019;12:639-650. [PMID: 30350463 DOI: 10.1002/cssc.201801974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/12/2018] [Indexed: 06/08/2023]
13
Promoted catalytic performance of Ni-SBA-15 catalysts by modifying with Fe and Cu for hydrogenation of levulinic acid to gamma-valerolactone. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
14
Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S. An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γ-Valerolactone. CHEMSUSCHEM 2017;10:1720-1732. [PMID: 28328085 DOI: 10.1002/cssc.201601769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Indexed: 06/06/2023]
15
Patil NM, Bhanage BM. Greener, Recyclable, and Reusable Ruthenium(III) Chloride/Polyethylene Glycol/Water System for the Selective Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone. ChemCatChem 2016. [DOI: 10.1002/cctc.201600872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
16
Gold-iridium catalysts for the hydrogenation of biomass derived products. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62512-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
17
Zhang J, Xie B, Wang L, Yi X, Wang C, Wang G, Dai Z, Zheng A, Xiao FS. Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones. ChemCatChem 2016. [DOI: 10.1002/cctc.201600739] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
18
Insights into the selective hydrogenation of levulinic acid to γ-valerolactone using supported mono- and bimetallic catalysts. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
19
Rodiansono R, Astuti MD, Hara T, Ichikuni N, Shimazu S. Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01731a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Jones DR, Iqbal S, Ishikawa S, Reece C, Thomas LM, Miedziak PJ, Morgan DJ, Edwards JK, Bartley JK, Willock DJ, Hutchings GJ. The conversion of levulinic acid into γ-valerolactone using Cu–ZrO2 catalysts. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00382f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Villa A, Schiavoni M, Chan-Thaw CE, Fulvio PF, Mayes RT, Dai S, More KL, Veith GM, Prati L. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. CHEMSUSCHEM 2015;8:2520-2528. [PMID: 26089180 DOI: 10.1002/cssc.201500331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Indexed: 06/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA