1
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Chowdhury AA, Rodgers K, Godbole NM, Awasthi S. Stability and structure-activity relationship of the SPA4 peptide under ambient and stressed conditions of lung injury. RSC Adv 2023; 13:18864-18877. [PMID: 37350860 PMCID: PMC10282593 DOI: 10.1039/d3ra02918b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung inflammation and injuries are major health problems. The SPA4 peptide (amino acid sequence GDFRYSDGTPVNYTNWYRGE) binds to Toll-like receptor-4 and exerts anti-inflammatory activity. In this study, we have determined the stability of the structure and structure-activity relationship of the SPA4 peptide under ambient and stressed conditions of lung injury. The SPA4 peptide was maintained at different pH and temperatures, in solutions of different ionic strengths, and simulated lung fluids. The primary and secondary structure of the SPA4 peptide was determined by ultraviolet-visible (UV-VIS) and circular dichroism (CD) spectroscopy. The activity of the SPA4 peptide was determined by measurement of secreted levels of chemokine C-X-C motif ligand 1/keratinocyte-derived chemokine (CXCL1/KC) and lactate by primary mouse lung epithelial cells against lipopolysaccharide (LPS) stimuli. Our results demonstrate the stability of the structure of the SPA4 peptide at room temperature and 4 °C over 10 days. The original UV-VIS spectra of the SPA4 peptide followed a typical pattern when incubated in solutions of pH 5.7, 7.0, and 8.0 at different temperatures, simulated lung fluids, and most of the chemical components. Slight shifts in the absorbance peaks, derivative values, and vibrational fine structures were noted in the fourth-derivative spectra of the SPA4 peptide under some conditions. An increased level of lactate is the hallmark of lung injury. The SPA4 peptide on its own and in the presence of lactate exerts anti-inflammatory activity. The primary and secondary structure and the activity of the SPA4 peptide remain intact when pre-incubated in 2 mM sodium lactate solution. The results provide important insights about the stability and structure-activity relationship of the SPA4 peptide.
Collapse
Affiliation(s)
- Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center 1110 N. Stonewall Avenue Oklahoma City OK-73117 USA +1-405-271-7505 +1-405-271-6593 extn 47332
| | - Karla Rodgers
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center 940 Stanton L. Young Blvd Oklahoma City OK-73104 USA
| | - Nachiket M Godbole
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center 1110 N. Stonewall Avenue Oklahoma City OK-73117 USA +1-405-271-7505 +1-405-271-6593 extn 47332
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center 1110 N. Stonewall Avenue Oklahoma City OK-73117 USA +1-405-271-7505 +1-405-271-6593 extn 47332
| |
Collapse
|
3
|
Buccini DF, Roriz BC, Rodrigues JM, Franco OL. Antimicrobial peptides could antagonize uncontrolled inflammation via Toll-like 4 receptor. Front Bioeng Biotechnol 2022; 10:1037147. [PMID: 36568291 PMCID: PMC9767961 DOI: 10.3389/fbioe.2022.1037147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides are part of the organism's defense system. They are multifunctional molecules capable of modulating the host's immune system and recognizing molecules present in pathogens such as lipopolysaccharides (LPSs). LPSs are recognized by molecular patterns associated with pathogens known as Toll-like receptors (TLRs) that protect the organism from pathological microorganisms. TLR4 is responsible for LPS recognition, thus inducing an innate immune response. TLR4 hyperstimulation induces the uncontrolled inflammatory process that is observed in many illnesses, including neurodegenerative, autoimmune and psoriasis). Molecules that act on TLR4 can antagonize the exacerbated inflammatory process. In this context, antimicrobial peptides (AMPs) are promising molecules capable of mediating toll-like receptor signaling. Therefore, here we address the AMPs studied so far with the aim of inhibiting the intense inflammatory process. In addition, we aim to explore some of the interactions between exogenous AMPs and TLR4.
Collapse
Affiliation(s)
- Danieli F. Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Júlia M. Rodrigues
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octavio L. Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Chowdhury AA, Godbole NM, Chataut N, Kosanke S, Rodgers K, Awasthi S. Effects of SPA4 peptide on lipopolysaccharide-disrupted lung epithelial barrier, injury, and function in a human cell system and mouse model of lung injury. Physiol Rep 2022; 10:e15353. [PMID: 35838161 PMCID: PMC9284632 DOI: 10.14814/phy2.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 05/03/2023] Open
Abstract
Disrupted epithelial barrier, fluid accumulation, inflammation, and compromised physiology are hallmarks of lung injury. Here we investigated the structural stability of the Toll-like receptor-4 (TLR4)-interacting SPA4 peptide, its effect on Pseudomonas aeruginosa lipopolysaccharide (LPS)-disrupted epithelial barrier in a human cell system, and lung injury markers in a mouse model of LPS-induced lung inflammation. The structural properties of SPA4 peptide were investigated using circular dichroism and UV-VIS spectroscopy. The transepithelial electrical resistance (TEER), an indicator of barrier function, was measured after the cells were challenged with 1 μg/ml LPS and treated with 10 or 100 μM SPA4 peptide. The expression and localization of tight junction proteins were studied by immunoblotting and immunocytochemistry, respectively. Mice were intratracheally challenged with 5 μg LPS per g body weight and treated with 50 μg SPA4 peptide. The lung wet/dry weight ratios or edema, surfactant protein-D (SP-D) levels in serum, lung function, tissue injury, body weights, and temperature, and survival were determined as study parameters. The spectroscopy results demonstrated that the structure was maintained among different batches of SPA4 peptide throughout the study. Treatment with 100 μM SPA4 peptide restored the LPS-disrupted epithelial barrier, which correlated with the localization pattern of Zonula Occludens (ZO)-1 and occludin proteins. Correspondingly, SPA4 peptide treatment helped suppress the lung edema and levels of serum SP-D, improved some of the lung function parameters, and reduced the mortality risk against LPS challenge. Our results suggest that the anti-inflammatory activity of the SPA4 peptide facilitates the resolution of lung pathology.
Collapse
Affiliation(s)
- Asif Alam Chowdhury
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Nachiket M. Godbole
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Neha Chataut
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Stanley Kosanke
- Division of Comparative MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Karla Rodgers
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Shanjana Awasthi
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
5
|
Awasthi S, Kumar G, Ramani V, Awasthi V, Rodgers KK, Xie J, Beierle J, Kyere-Davies G, Singh B, Rahman N, Chowdhury AA, Chataut N. Mechanism of Anti-Inflammatory Activity of TLR4-Interacting SPA4 Peptide. Immunohorizons 2021; 5:659-674. [PMID: 34429343 PMCID: PMC8673433 DOI: 10.4049/immunohorizons.2100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/05/2022] Open
Abstract
The TLR4-interacting SPA4 peptide suppresses inflammation. We assessed the structural and physicochemical properties and binding of SPA4 peptide to TLR4-MD2. We also studied the changes at the whole transcriptome level, cell morphology, viability, secreted cytokines and chemokines, and cell influx in cell systems and mouse models challenged with LPS and treated with SPA4 peptide. Our results demonstrated that the SPA4 peptide did not alter the cell viability and size and only moderately affected the transcriptome of the cells. Computational docking and rendering suggested that the SPA4 peptide intercalates with LPS-induced TLR4-MD2 complex. Results with alanine mutations of D-2 amino acid and NYTXXXRG-12-19 motif of SPA4 peptide suggested their role in binding to TLR4 and in reducing the cytokine response against LPS stimulus. Furthermore, therapeutically administered SPA4 peptide significantly suppressed the secreted levels of cytokines and chemokines in cells and bronchoalveolar lavage fluids of LPS-challenged mice. The results suggest that the SPA4 peptide intercalates with LPS-induced TLR4 complex and signaling for the suppression of inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK;
| | - Gaurav Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Vijay Ramani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Vibhudutta Awasthi
- Research Imaging Facility, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK; and
| | - Karla K Rodgers
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jun Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jacob Beierle
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gertrude Kyere-Davies
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Bhupinder Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Negar Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
6
|
Awasthi S, Rahman N, Rui B, Kumar G, Awasthi V, Breshears M, Kosanke S. Lung and general health effects of Toll-like receptor-4 (TLR4)-interacting SPA4 peptide. BMC Pulm Med 2020; 20:179. [PMID: 32576172 PMCID: PMC7310322 DOI: 10.1186/s12890-020-01187-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background A surfactant protein-A-derived peptide, which we call SPA4 peptide (amino acids: GDFRYSDGTPVNYTNWYRGE), alleviates lung infection and inflammation. This study investigated the effects of intratracheally administered SPA4 peptide on systemic, lung, and health parameters in an outbred mouse strain, and in an intratracheal lipopolysaccharide (LPS) challenge model. Methods The outbred CD-1 mice were intratracheally administered with incremental doses of SPA4 peptide (0.625–10 μg/g body weight) once every 24 h, for 3 days. Mice left untreated and those treated with vehicle were included as controls. Mice were euthanized after 24 h of last administration of SPA4 peptide. In order to assess the biological activity of SPA4 peptide, C57BL6 mice were intratracheally challenged with 5 μg LPS/g body weight and treated with 50 μg SPA4 peptide via intratracheal route 1 h post LPS-challenge. Mice were euthanized after 4 h of LPS challenge. Signs of sickness and body weights were regularly monitored. At the time of necropsy, blood and major organs were harvested. Blood gas and electrolytes, serum biochemical profiles and SPA4 peptide-specific immunoglobulin G (IgG) antibody levels, and common lung injury markers (levels of total protein, albumin, and lactate, lactate dehydrogenase activity, and lung wet/dry weight ratios) were determined. Lung, liver, spleen, kidney, heart, and intestine were examined histologically. Differences in measured parameters were analyzed among study groups by analysis of variance test. Results The results demonstrated no signs of sickness or changes in body weight over 3 days of treatment with various doses of SPA4 peptide. It did not induce any major toxicity or IgG antibody response to SPA4 peptide. The SPA4 peptide treatment also did not affect blood gas, electrolytes, or serum biochemistry. There was no evidence of injury to the tissues and organs. However, the SPA4 peptide suppressed the LPS-induced lung inflammation. Conclusions These findings provide an initial toxicity profile of SPA4 peptide. Intratracheal administration of escalating doses of SPA4 peptide does not induce any significant toxicity at tissue and organ levels. However, treatment with a dose of 50 μg SPA4 peptide, comparable to 2.5 μg/g body weight, alleviates LPS-induced lung inflammation.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Negar Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Bin Rui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Gaurav Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, and Research Imaging Facility, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Melanie Breshears
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stanley Kosanke
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
7
|
Awasthi S, Singh B, Ramani V, Xie J, Kosanke S. TLR4-interacting SPA4 peptide improves host defense and alleviates tissue injury in a mouse model of Pseudomonas aeruginosa lung infection. PLoS One 2019; 14:e0210979. [PMID: 30689633 PMCID: PMC6349318 DOI: 10.1371/journal.pone.0210979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
Interaction between surfactant protein-A (SP-A) and toll-like receptor (TLR)4 plays a critical role in host defense. In this work, we studied the host defense function of SPA4 peptide (amino acids GDFRYSDGTPVNYTNWYRGE), derived from the TLR4-interacting region of SP-A, against Pseudomonas aeruginosa. We determined the binding of SPA4 peptide to live bacteria, and its direct antibacterial activity against P. aeruginosa. Pro-phagocytic and anti-inflammatory effects were investigated in JAWS II dendritic cells and primary alveolar macrophages. The biological relevance of SPA4 peptide was evaluated in a mouse model of acute lung infection induced by intratracheal challenge with P. aeruginosa. Our results demonstrate that the SPA4 peptide does not interact with or kill P. aeruginosa when cultured outside the host. The SPA4 peptide treatment induces the uptake and localization of bacteria in the phagolysosomes of immune cells. At the same time, the secreted amounts of TNF-α are significantly reduced in cell-free supernatants of SPA4 peptide-treated cells. In cells overexpressing TLR4, the TLR4-induced phagocytic response is maintained, but the levels of TLR4-stimulated TNF-α are reduced. Furthermore, our results demonstrate that the therapeutic administration of SPA4 peptide reduces bacterial burden, inflammatory cytokines and chemokines, intracellular signaling, and lactate levels, and alleviates lung edema and tissue damage in P. aeruginosa-infected mice. Together, our results suggest that the treatment with SPA4 peptide can help control the bacterial burden, inflammation, and tissue injury in a P. aeruginosa lung infection model.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Bhupinder Singh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Vijay Ramani
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Stanley Kosanke
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
8
|
Bruzzoni-Giovanelli H, Alezra V, Wolff N, Dong CZ, Tuffery P, Rebollo A. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 2017; 23:272-285. [PMID: 29097277 DOI: 10.1016/j.drudis.2017.10.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are well recognized as promising therapeutic targets. Consequently, interfering peptides (IPs) - natural or synthetic peptides capable of interfering with PPIs - are receiving increasing attention. Given their physicochemical characteristics, IPs seem better suited than small molecules to interfere with the large surfaces implicated in PPIs. Progress on peptide administration, stability, biodelivery and safety are also encouraging the interest in peptide drug development. The concept of IPs has been validated for several PPIs, generating great expectations for their therapeutic potential. Here, we describe approaches and methods useful for IPs identification and in silico, physicochemical and biological-based strategies for their design and optimization. Selected promising in-vivo-validated examples are described and advantages, limitations and potential of IPs as therapeutic tools are discussed.
Collapse
Affiliation(s)
- Heriberto Bruzzoni-Giovanelli
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; UMRS 1160 Inserm, Paris, France; Centre d'Investigation Clinique 1427 Inserm/AP-HP Hôpital Saint Louis, Paris, France
| | - Valerie Alezra
- Université Paris-Sud, Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS, Université Paris-Saclay, Faculté des Sciences d'Orsay, France
| | - Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS, UMR 3528, Institut Pasteur, F-75015 Paris, France
| | - Chang-Zhi Dong
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; ITODYS, UMR 7086 CNRS, Paris, France
| | - Pierre Tuffery
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; Inserm UMR-S 973, RPBS, Paris, France
| | - Angelita Rebollo
- CIMI Paris, UPMC, Inserm U1135, Hôpital Pitié Salpétrière, Paris, France.
| |
Collapse
|
9
|
Billod JM, Lacetera A, Guzmán-Caldentey J, Martín-Santamaría S. Computational Approaches to Toll-Like Receptor 4 Modulation. Molecules 2016; 21:molecules21080994. [PMID: 27483231 PMCID: PMC6274477 DOI: 10.3390/molecules21080994] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4), along with its accessory protein myeloid differentiation factor 2 (MD-2), builds a heterodimeric complex that specifically recognizes lipopolysaccharides (LPS), which are present on the cell wall of Gram-negative bacteria, activating the innate immune response. Some TLR4 modulators are undergoing preclinical and clinical evaluation for the treatment of sepsis, inflammatory diseases, cancer and rheumatoid arthritis. Since the relatively recent elucidation of the X-ray crystallographic structure of the extracellular domain of TLR4, research around this fascinating receptor has risen to a new level, and thus, new perspectives have been opened. In particular, diverse computational techniques have been applied to decipher some of the basis at the atomic level regarding the mechanism of functioning and the ligand recognition processes involving the TLR4/MD-2 system at the atomic level. This review summarizes the reported molecular modeling and computational studies that have recently provided insights into the mechanism regulating the activation/inactivation of the TLR4/MD-2 system receptor and the key interactions modulating the molecular recognition process by agonist and antagonist ligands. These studies have contributed to the design and the discovery of novel small molecules with promising activity as TLR4 modulators.
Collapse
Affiliation(s)
| | | | - Joan Guzmán-Caldentey
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Sonsoles Martín-Santamaría
- Department of Chemical & Physical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|