1
|
Karlsson M, Johansson LG, Mazzei L, Froitzheim J, Wolff M. Neutron Reflectivity in Corrosion Research on Metals. ACS MATERIALS AU 2024; 4:346-353. [PMID: 39006394 PMCID: PMC11240407 DOI: 10.1021/acsmaterialsau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 07/16/2024]
Abstract
Neutron reflectivity (NR) is potentially a powerful tool for characterizing chemical and morphological changes in thin films and at buried interfaces in corrosion science. While the scope of NR is limited by its inherent demands for low surface roughness and high sample planarity, these drawbacks are compensated for by the unique ability to detect light elements and distinguish between isotopes. Furthermore, the generally weak absorption of neutrons by matter allows the use of bulky sample environments and in situ experiments. In particular, the layer thickness range of 3-100 nm accessible by NR is appropriate for studying air-formed films and passive films, which are crucial for the ability of metallic materials to resist corrosion, as well as for investigating the interaction of metal surfaces with hydrogen and its compounds, e.g., water. Also, NR is suitable for studying early stages of oxide growth on metals at high temperature, including the transition from Cabrera-Mott-type films to Wagner-type growth. Here, we outline key characteristics of NR as applied to the study of corrosion of metals, exemplified by earlier work, and discuss perspectives for future work in the field. The aim of our work is to stimulate the application of the unique capabilities of NR to corrosion science.
Collapse
Affiliation(s)
- Maths Karlsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Lars-Gunnar Johansson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Laura Mazzei
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Jan Froitzheim
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Max Wolff
- Department
of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
2
|
Bonda L, Müller J, Fischer L, Löwe M, Kedrov A, Schmidt S, Hartmann L. Facile Synthesis of Catechol-Containing Polyacrylamide Copolymers: Synergistic Effects of Amine, Amide and Catechol Residues in Mussel-Inspired Adhesives. Polymers (Basel) 2023; 15:3663. [PMID: 37765517 PMCID: PMC10535631 DOI: 10.3390/polym15183663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The straightforward synthesis of polyamide-derived statistical copolymers with catechol, amine, amide and hydroxy residues via free radical polymerization is presented. In particular, catechol, amine and amide residues are present in natural mussel foot proteins, enabling strong underwater adhesion due to synergistic effects where cationic residues displace hydration and ion layers, followed by strong short-rang hydrogen bonding between the catechol or primary amides and SiO2 surfaces. The present study is aimed at investigating whether such synergistic effects also exist for statistical copolymer systems that lack the sequence-defined positioning of functional groups in mussel foot proteins. A series of copolymers is established and the adsorption in saline solutions on SiO2 is determined by quartz crystal microbalance measurements and ellipsometry. These studies confirm a synergy between cationic amine groups with catechol units and primary amide groups via an increased adsorptivity and increased polymer layer thicknesses. Therefore, the free radical polymerization of catechol, amine and amide monomers as shown here may lead to simplified mussel-inspired adhesives that can be prepared with the readily scalable methods required for large-scale applications.
Collapse
Affiliation(s)
- Lorand Bonda
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (L.B.); (J.M.)
| | - Janita Müller
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (L.B.); (J.M.)
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany;
| | - Maryna Löwe
- Synthetische Membransysteme, Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (M.L.); (A.K.)
| | - Alexej Kedrov
- Synthetische Membransysteme, Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (M.L.); (A.K.)
| | - Stephan Schmidt
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (L.B.); (J.M.)
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (L.B.); (J.M.)
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Milatz R, Duvigneau J, Vancso GJ. Dopamine-Based Copolymer Bottlebrushes for Functional Adhesives: Synthesis, Characterization, and Applications in Surface Engineering of Antifouling Polyethylene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37392471 PMCID: PMC10360033 DOI: 10.1021/acsami.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Nonpolar materials like polyolefins are notoriously challenging substrates for surface modification. However, this challenge is not observed in nature. Barnacle shells and mussels, for example, utilize catechol-based chemistry to fasten themselves onto all kinds of materials, such as boat hulls or plastic waste. Here, a design is proposed, synthesized, and demonstrated for a class of catechol-containing copolymers (terpolymers) for surface functionalization of polyolefins. Dopamine methacrylamide (DOMA), a catechol-containing monomer, is incorporated into a polymer chain together with methyl methacrylate (MMA) and 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM). DOMA serves as adhesion points, BIEM provides functional sites for subsequent "grafting from" reactions, and MMA provides the possibility for concentration and conformation adjustment. First, the adhesive capabilities of DOMA are demonstrated by varying its content in the copolymer. Then, terpolymers are spin-coated on model Si substrates. Subsequently, the atom transfer initiator (ATRP) initiating group is used to graft a poly(methyl methacrylate) (PMMA) layer from the copolymers, with 40% DOMA content providing a coherent PMMA film. To demonstrate functionalization on a polyolefin substrate, the copolymer is spin-coated on high-density polyethylene (HDPE) substrates. A POEGMA layer is grafted from the ATRP initiator sites on the terpolymer chain on the HDPE films to provide antifouling characteristics. Static contact angle values and Fourier transform infrared (FTIR) spectra confirm the presence of POEGMA on the HDPE substrate. Finally, the anticipated antifouling functionality of grafted POEGMA is demonstrated by observing the inhibition of nonspecific adsorption of the fluorescein-modified bovine serum albumin (BSA) protein. The poly(oligoethylene glycol methacrylate) POEGMA layers grafted on 30% DOMA-containing copolymers on HDPE show optimal antifouling performance exhibiting a 95% reduction of BSA fluorescence compared to nonfunctionalized and surface-fouled polyethylene. These results demonstrate the successful utilization of catechol-based materials for functionalizing polyolefin surfaces.
Collapse
Affiliation(s)
- Roland Milatz
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
- DPI, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gyula Julius Vancso
- Department of Materials Science and Technology of Polymers, and Department of Sustainable Polymer Chemistry, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
4
|
Fujita T, Shuta M, Mano M, Matsumoto S, Nagasawa A, Yamada A, Naito M. Forced Gradient Copolymer for Rational Design of Mussel-Inspired Adhesives and Dispersants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:266. [PMID: 36614607 PMCID: PMC9822366 DOI: 10.3390/ma16010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, there has been considerable research into functional materials inspired by living things. Much attention has been paid to the development of adhesive materials that mimic the adhesive proteins secreted by a mussel's foot. These mussel-inspired materials have superior adhesiveness to various adherents owing to the non-covalent interactions of their polyphenolic moieties, e.g., hydrogen bonding, electrostatic interactions, and even hydrophobic interactions. Various factors significantly affect the adhesiveness of mussel-inspired polymers, such as the molecular weight, cross-linking density, and composition ratio of the components, as well as the chemical structure of the polyphenolic adhesive moieties, such as l-3,4-dihydroxyphenylalanine (l-Dopa). However, the contributions of the position and distribution of the adhesive moiety in mussel-inspired polymers are often underestimated. In the present study, we prepared a series of mussel-inspired alkyl methacrylate copolymers by controlling the position and distribution of the adhesive moiety, which are known as "forced gradient copolymers". We used a newly designed gallic-acid-bearing methacrylate (GMA) as the polyphenolic adhesive moiety and copolymerized it with 2-ethylhexyl methacrylate (EHMA). The resulting forced gradient adhesive copolymer of GMA and EHMA (poly(GMA-co-EHMA), Poly1) was subjected to adhesion and dispersion tests with an aluminum substrate and a BaTiO3 nanoparticle in organic solvents, respectively. In particular, this study aims to clarify how the monomer position and distribution of the adhesive moiety in the mussel-inspired polymer affect its adhesion and dispersion behavior on a flat metal oxide surface and spherical inorganic oxide surfaces of several tens of nanometers in diameter, respectively. Here, forced gradient copolymer Poly1 consisted of a homopolymer moiety of EHMA (Poly3) and a random copolymer moiety of EHMA and GMA (Poly4). The composition ratio of GMA and the molecular weight were kept constant among the Poly1 series. Simultaneous control of the molecular lengths of Poly3 and Poly4 allowed us to discuss the effects on the distribution of GMA in Poly1. Poly1 exhibited apparent distribution dependency with regard to the adhesiveness and the dispersibility of BaTiO3. Poly1 showed the highest adhesion strength when the composition ratio of GMA was approximately 9 mol% in the portion of the Poly4 segment. In contrast, the block copolymer consisting of the Poly3 segment and Poly4 segment with only adhesive moiety 1 showed the lowest viscosity for dispersion of BaTiO3 nanoparticles. These results indicate that copolymers with mussel-inspired adhesive motifs require the proper design of the monomer position and distribution in Poly1 according to the shape and characteristics of the adherend to maximize their functionality. This research will facilitate the rational design of bio-inspired adhesive materials derived from plants that outperform natural materials, and it will eventually contribute to a sustainable circular economy.
Collapse
Affiliation(s)
- Takehiro Fujita
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Masami Shuta
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Mika Mano
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Shinnosuke Matsumoto
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Atsushi Nagasawa
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Akihiro Yamada
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Masanobu Naito
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
5
|
Casagualda C, Mancebo-Aracil J, Moreno-Villaécija M, López-Moral A, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Lego Approach for Controlling the Wettability of Surfaces with Colorless Coatings. Biomimetics (Basel) 2022; 8:3. [PMID: 36648789 PMCID: PMC9844497 DOI: 10.3390/biomimetics8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The control of surface wettability with polyphenol coatings has been at the forefront of materials research since the late 1990s, when robust underwater adhesion was linked to the presence of L-DOPA-a catecholic amino acid-in unusually high amounts, in the sequences of several mussel foot proteins. Since then, several successful approaches have been reported, although a common undesired feature of most of them is the presence of a remnant color and/or the intrinsic difficulty in fine-tuning and controlling the hydrophobic character. We report here a new family of functional catechol-based coatings, grounded in the oxidative condensation of readily available pyrocatechol and thiol-capped functional moieties. The presence of at least two additional thiol groups in their structure allows for polymerization through the formation of disulfide bonds. The synthetic flexibility, together with its modular character, allowed us to: (I) develop coatings with applications exemplified by textiles for oil-spill water treatment; (II) develop multifunctional coatings, and (III) fine-tune the WCA for flat and textile surfaces. All of this was achieved with the application of colorless coatings.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Juan Mancebo-Aracil
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Instituto de Química del Sur-INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Miguel Moreno-Villaécija
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties. Molecules 2022; 27:molecules27134027. [PMID: 35807272 PMCID: PMC9268726 DOI: 10.3390/molecules27134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test.
Collapse
|
7
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
8
|
Heydari M, Sharif F, Ebrahimi M. Bioinspired pressure-sensitive adhesive: evaluation of the effect of dopamine methacrylamide comonomer as a general property modifier using molecular dynamics simulation. RSC Adv 2021; 11:20557-20569. [PMID: 35479894 PMCID: PMC9033950 DOI: 10.1039/d1ra03634c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
The use of catechol-containing comonomers as a general property enhancer to achieve unique properties has received particular attention for designing bioinspired polymeric materials. In this study, molecular dynamics simulation was used to investigate the role of dopamine methacrylamide (DMA) and N-phenethyl methacrylamide (PMA) comonomers in chain conformation and their effects on the mechanical properties and adhesion of poly(n-butyl acrylate-co-acrylic acid) copolymer. Addition of 4% by weight of DMA comonomer in the terpolymer structure reduces the gyration radius of the poly(n-butyl acrylate-co-acrylic acid) copolymer. This reduction is due to the formation of intramolecular hydrogen bond interactions. A further increase in the DMA up to 12.2% by weight increases the radius of gyration by 5%. The effect of PMA on the gyration radius of the poly(n-butyl acrylate-co-acrylic acid) copolymer is more extensive, compared to DMA. While DMA enhances both van der Waals and electrostatic components of the cohesive energy density through increasing π–π interactions and hydrogen bond formations, PMA only improves the van der Waals component. Assessment of mechanical properties revealed that the addition of DMA comonomer resulted in a transition from brittle to tough behavior in poly(n-butyl acrylate-co-acrylic acid) pressure-sensitive adhesive. Ductility index improvement by DMA is higher than that by PMA. DMA comonomers accumulate on the silica surface resulting in the terpolymer chains approaching the dry silica surface from the hydroxyl groups of the catechol. Accumulation of DMA only enhances the cohesive energy and does not improve the adhesive energy. The use of catechol-containing comonomers as a general property enhancer to achieve unique properties has received particular attention for designing bioinspired polymeric materials.![]()
Collapse
Affiliation(s)
- Mahmoud Heydari
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran 15875-4413 Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran 15875-4413 Iran
| | - Morteza Ebrahimi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran 15875-4413 Iran
| |
Collapse
|
9
|
Chen K, He J, Zhang D, You L, Li X, Wang H, Mei J. Bioinspired Dynamic Camouflage from Colloidal Nanocrystals Embedded Electrochromics. NANO LETTERS 2021; 21:4500-4507. [PMID: 33989497 DOI: 10.1021/acs.nanolett.1c01419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Camouflage is often seen in animals, and it presents in both passive and active forms. For instance, the wings of Closterocerus coffeellae exhibit distinct appearances against different backgrounds, while the chameleon actively changes its skin colors to morph into the environment. Herein, we report an artificial skin-like optoelectronic device that enables actively changing appearances and passively morphing into the environment by manipulating light-matter interactions with electrochromic polymers and photonic colloid nanocrystals. To construct the new electrochromic device, highly reflective, yet transmissive photonic nanocrystals are introduced into the gel electrolyte and sandwiched between the layers of electrochromic polymers and ion storage materials. Through voltage-controlled color switching of electrochromic polymers from colored state to bleached state, the degree of light absorbance, transmittance, and reflectance can be finely balanced and precisely modulated with the device. A broad synthesized color gamut and angle-dependent visual effects can be realized on this electronic skin-like device.
Collapse
Affiliation(s)
- Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiazhi He
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xuefei Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Influence of Polymer Composition and Substrate on the Performance of Bioinspired Coatings with Antibacterial Activity. COATINGS 2019. [DOI: 10.3390/coatings9110733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of methacrylic copolymers bearing thiazolium cationic groups and catechol moieties were evaluated as antibacterial coatings on a variety of materials including aluminum and plastics such as polycarbonate, poly(methyl methacrylate), and silicone rubber. The thermal properties of the copolymers were first studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cationic copolymers were thermally stable up to 200 °C and presented glass transition temperatures values well above 100 °C; thus, an acceptable thermal behavior for typical biomedical applications. The cationic copolymers with variable content of the adhesive anchoring N-(3,4-dihydroxyphenethyl) methacrylamide (DOMA) units were coated onto the metal and polymeric substrates by drop casting and the adhesive properties of the obtained coatings were further evaluated as a function of DOMA content and substrate. Optical profilometry, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra, and antimicrobial studies reveal that the coatings adhere stronger to metal substrates than to the polymeric substrates. The copolymers with higher content of DOMA, 24 mol.%, resist solvent erosion treatment when coated onto all substrates and exhibit antimicrobial activity against Gram-positive S. aureus bacteria after this erosion treatment. In contrast, copolymers with low content, 9 mol.% of DOMA, only remain attached onto the aluminum metal substrate after solvent treatment, while on polymeric substrates the coatings are almost removed and do not show any efficacy against S. aureus bacteria.
Collapse
|
11
|
Welbourn R, Clarke S. New insights into the solid–liquid interface exploiting neutron reflectivity. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Rezk AI, Ramachandra Kurup Sasikala A, Nejad AG, Mousa HM, Oh YM, Park CH, Kim CS. Strategic design of a Mussel-inspired in situ reduced Ag/Au-Nanoparticle Coated Magnesium Alloy for enhanced viability, antibacterial property and decelerated corrosion rates for degradable implant Applications. Sci Rep 2019; 9:117. [PMID: 30644432 PMCID: PMC6333833 DOI: 10.1038/s41598-018-36545-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
Magnesium (Mg) and its alloys have attracted much attention as a promising candidate for degradable implant applications however the rapid corrosion of magnesium inside the human body greatly limits its use as an implant material. Therefore, coating the alloy surface with a multifunctional film is a promising way to overcome the drawbacks. Here we propose for the first time a multifunction layer coating to enhance the cell viability, antibacterial property and decelerated corrosion rates to act as a novel material to be used for degradable implant Applications. For that, the magnesium alloy (AZ31) was first treated with hydrofluoric acid (HF) and then dopamine tris Hydrochloric acid (tris-HCL) solution. The reducing catechol groups in the polydopamine (PD) layer subsequently immobilize silver/gold ions in situ to form uniformly dispersed Ag/Au nanoparticles on the coating layer. The successful formation of Ag/Au nanoparticles on the HF-PD AZ31 alloy was confirmed using XPS and XRD, and the morphology of all the coated samples were investigated using SEM images. The alloy with HF-PDA exhibit enhanced cell attachment and proliferation. Moreover, the nanoparticle immobilized HF-PD alloy exhibited dramatic corrosion resistance enhancement with superior antibacterial properties and accountable biocompatibility. Thus the result suggest that HF-PD Ag/Au alloy has great potential in the application of degradable implant and the surface modification method is of great significance to determine its properties.
Collapse
Affiliation(s)
- Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Arathyram Ramachandra Kurup Sasikala
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Amin Ghavami Nejad
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Hamouda M Mousa
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena, 83523, Egypt
| | - Young Min Oh
- Department of Neurosurgery, Chonbuk National University Medical School & Hospital, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
13
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Puertas-Bartolomé M, Fernández-Gutiérrez M, García-Fernández L, Vázquez-Lasa B, San Román J. Biocompatible and bioadhesive low molecular weight polymers containing long-arm catechol-functionalized methacrylate. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Hlushko R, Hlushko H, Sukhishvili SA. A family of linear phenolic polymers with controlled hydrophobicity, adsorption and antioxidant properties. Polym Chem 2018. [DOI: 10.1039/c7py01973d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of a series of antioxidant polymers with varied capability to scavenge radicals and alter the wettability of surfaces is reported.
Collapse
Affiliation(s)
- Raman Hlushko
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Hanna Hlushko
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
16
|
Lee W, Ahn Y. Separation of Oil/Water Mixtures Using Water-Repellent Particles Coated by a Bioinspired Catechol-based Polymer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Woohee Lee
- Department of Chemistry; Dankook University; Chunan 31116 Korea
| | - Yonghyun Ahn
- Department of Chemistry; Dankook University; Chunan 31116 Korea
| |
Collapse
|
17
|
|
18
|
Payra D, Fujii Y, Das S, Takaishi J, Naito M. Rational design of a biomimetic glue with tunable strength and ductility. Polym Chem 2017. [DOI: 10.1039/c6py02232d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A biomimetic design has been explored to achieve high-performance polymer glue with tuneable strength and ductility, which is suitable for a wide-range of substrates under both similar and dissimilar bonding.
Collapse
Affiliation(s)
- Debabrata Payra
- International Center for Young Scientists (ICYS)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
- Adhesive Materials Group
| | - Yoshihisa Fujii
- Separation Functional Materials Group
- Research Center for Structural Materials
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Sandip Das
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| | - Junko Takaishi
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| | - Masanobu Naito
- Adhesive Materials Group
- Research Center for Structural Materials (RCSM)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0047
- Japan
| |
Collapse
|
19
|
Payra D, Naito M, Fujii Y, Nagao Y. Hydrophobized plant polyphenols: self-assembly and promising antibacterial, adhesive, and anticorrosion coatings. Chem Commun (Camb) 2016; 52:312-5. [DOI: 10.1039/c5cc07090b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A naturally abundant plant polyphenol was rationally modified to partiallyn-alkylated derivatives for wide-range organosolubility, spontaneous fibrous self-assembly, and a highly stable multifunctional thin-film.
Collapse
Affiliation(s)
- Debabrata Payra
- Research Center for Strategic Materials
- Structural Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Masanobu Naito
- Research Center for Strategic Materials
- Structural Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yoshihisa Fujii
- Advanced Key Technologies Division
- Polymer Materials Unit
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yuki Nagao
- School of Materials Science
- Japan Advanced Institute of Science, and Technology
- Nomi
- Japan
| |
Collapse
|