1
|
Zilberg S. Light driven photoswitches: three classes of molecular systems that result in a single photoproduct via a conical intersection and an exothermic reverse reaction. Phys Chem Chem Phys 2024; 27:32-41. [PMID: 39629514 DOI: 10.1039/d4cp04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A common feature of molecular photoswitches is the selectivity of their photo-processes. The photoswitching model must combine a selective photochemical direct route and a thermal reverse reaction from the product back to the parent reactant. The conical intersection model is an appropriate approach to this problem. Valence bond analysis of the ground state reactions between the photoswitching isomers provides a chemically oriented approach to locate the conical intersection and to define its two coordinates. Three different classes of molecular photoswitches have been identified:(1) A reactant and product are connected by two distinct reaction routes with two different transition states. The conical intersection is situated inside this phase-inverting loop. An example of this class of photoswitches is an isomerization around a polar double CC, CN or NN bond. The capacity to store energy is indicated by the energy gap between the reactant and product. However, this can also result in the destabilisation of the product. For instance, the addition of bulky substituents can disrupt the planar fragment around the double bond, leading to the loss of π-conjugation. Two non-equivalent isomers with different contributions of polar and biradical forms can exhibit a highly distorted conical intersection topology. (2) The photoreaction leading to two photoproducts is a regular case. However, this case could be a "quasi single product", if two products or the parent reactant and one of the products are equivalent isomers. This is the second type of photoswitch. (3) If one of the two products is at a higher energy level than both the reactant and the main product, then this is also a possible molecular photoswitching mechanism. The second high energy product is likely to be unstable and it is close to conical intersection. The norbornadiene-quadricyclane pair is an example of this type of photoswitch.
Collapse
Affiliation(s)
- Shmuel Zilberg
- Department of Chemical Sciences, Materials Research Center, Ariel University, 4076414 Ariel, Israel.
| |
Collapse
|
2
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
3
|
Clark JA, Robinson S, Espinoza EM, Bao D, Derr JB, Croft L, O'Mari O, Grover WH, Vullev VI. Poly(dimethylsiloxane) as a room-temperature solid solvent for photophysics and photochemistry. Phys Chem Chem Phys 2024; 26:8062-8076. [PMID: 38372740 DOI: 10.1039/d3cp05413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions. It is easy to mould into any shape, forming surfaces with a pronounced smoothness. While PDMS is broadly used for the fabrication of microfluidic devices, it swells in organic solvents, presenting severe limitations for the utility of such devices for applications employing non-aqueous fluids. Nevertheless, this swelling is reversible, which proves immensely beneficial for loading samples into the PDMS solid matrix. Transferring molecular-rotor dyes (used for staining prokaryotic cells and amyloid proteins) from non-viscous solvents into PDMS induces orders-of-magnitude enhancement of their fluorescence quantum yield and excited-state lifetimes, providing mechanistic insights about their deactivation pathways. These findings demonstrate the unexplored potential of PDMS as a solid solvent for optical applications.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Samantha Robinson
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Duoduo Bao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Luca Croft
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - William H Grover
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Tamayo J, Do T, El-Maraghy K, Vullev VI. Are the emission quantum yields of cesium plumbobromide perovskite nanocrystals reliable metrics for their quality? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Rybicka-Jasińska K, Espinoza EM, Clark JA, Derr JB, Carlos G, Morales M, Billones MK, O'Mari O, Ågren H, Baryshnikov GV, Vullev VI. Making Nitronaphthalene Fluoresce. J Phys Chem Lett 2021; 12:10295-10303. [PMID: 34653339 PMCID: PMC8800371 DOI: 10.1021/acs.jpclett.1c02155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitroaromatic compounds are inherently nonfluorescent, and the subpicosecond lifetimes of the singlet excited states of many small nitrated polycyclic aromatic hydrocarbons, such as nitronaphthalenes, render them unfeasible for photosensitizers and photo-oxidants, despite their immensely beneficial reduction potentials. This article reports up to a 7000-fold increase in the singlet-excited-state lifetime of 1-nitronaphthalene upon attaching an amine or an N-amide to the ring lacking the nitro group. Varying the charge-transfer (CT) character of the excited states and the medium polarity balances the decay rates along the radiative and the two nonradiative pathways and can make these nitronaphthalene derivatives fluoresce. The strong electron-donating amine suppresses intersystem crossing (ISC) but accommodates CT pathways of nonradiate deactivation. Conversely, the N-amide does not induce a pronounced CT character but slows down ISC enough to achieve relatively long lifetimes of the singlet excited state. These paradigms are key for the pursuit of electron-deficient (n-type) organic conjugates with promising optical characteristics.
Collapse
Affiliation(s)
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - John A Clark
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Gregory Carlos
- Department of Biology, University of California, Riverside, California 92521, United States
| | - Maryann Morales
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Mimi Karen Billones
- Department of Biology, University of California, Riverside, California 92521, United States
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Xu P, Hu L, Yu C, Yang W, Kang F, Zhang M, Jiang P, Wang J. Unsymmetrical cyanine dye via in vivo hitchhiking endogenous albumin affords high-performance NIR-II/photoacoustic imaging and photothermal therapy. J Nanobiotechnology 2021; 19:334. [PMID: 34689764 PMCID: PMC8543934 DOI: 10.1186/s12951-021-01075-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Herein, an unprecedented synergistic strategy for the development of high-performance NIR-II fluorophore is proposed and validated. Based on an unsymmetrical cyanine dye design strategy, the NIR-II emissive dye NIC was successfully developed by replacing only one of the indoline donors of symmetrical cyanine dye ICG with a fully conjugated benz[c,d]indole donor. This minor structural change maximally maintains the high extinction coefficient advantage of cyanine dyes. NIC-ER with endogenous albumin-hitchhiking capability was constructed to further enhance its in vivo fluorescence brightness. In the presence of HSA (Human serum albumin), NIC-ER spontaneously resides in the albumin pocket, and a brilliant ~89-fold increase in fluorescence was observed. Due to its high molar absorptivity and moderate quantum yield, NIC-ER in HSA exhibits bright NIR-II emission with high photostability and significant Stokes shift (>110 nm). Moreover, NIC-ER was successfully employed for tumor-targeted NIR-II/PA imaging and efficient photothermal tumor elimination. Overall, our strategy may open up a new avenue for designing and constructing high-performance NIR-II fluorophores. ![]()
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.,Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Linan Hu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Cheng Yu
- Departments of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, #127 West Changle Road, Shanxi, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
7
|
Rybicka-Jasińska K, Derr JB, Vullev VI. What defines biomimetic and bioinspired science and engineering? PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.
Collapse
Affiliation(s)
| | - James B. Derr
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
| | - Valentine I. Vullev
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
- Department of Bioengineering , University of California , Riverside , CA , 92521 , USA
- Department of Chemistry , University of California , Riverside , CA , 92521 , USA
- Materials Science and Engineering Program , University of California , Riverside , CA , 92521 , USA
| |
Collapse
|
8
|
Clark JA, Orłowski R, Derr JB, Espinoza EM, Gryko DT, Vullev VI. How does tautomerization affect the excited-state dynamics of an amino acid-derivatized corrole? PHOTOSYNTHESIS RESEARCH 2021; 148:67-76. [PMID: 33710530 PMCID: PMC8154756 DOI: 10.1007/s11120-021-00824-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/22/2021] [Indexed: 05/10/2023]
Abstract
In the first two decades of the XXI century, corroles have emerged as an important class of porphyrinoids for photonics and biomedical photonics. In comparison with porphyrins, corroles have lower molecular symmetry and higher electron density, which leads to uniquely complementary properties. In macrocycles of free-base corroles, for example, three protons are distributed among four pyrrole nitrogens. It results in distinct tautomers that have different thermodynamic energies. Herein, we focus on the excited-state dynamics of a corrole modified with L-phenylalanine. The tautomerization in the singlet-excited state occurs in the timescales of about 10-100 picoseconds and exhibits substantial kinetic isotope effects. It, however, does not discernably affect nanosecond deactivation of the photoexcited corrole and its basic photophysics. Nevertheless, this excited-state tautomerization dynamics can strongly affect photoinduced processes with comparable or shorter timescales, considering the 100-meV energy differences between the tautomers in the excited state. The effects on the kinetics of charge transfer and energy transfer, initiated prior to reaching the equilibrium thermalization of the excited-state tautomer population, can be indeed substantial. Such considerations are crucially important in the design of systems for artificial photosynthesis and other forms of energy conversion and charge transduction.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Rafał Orłowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- College of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Song KH, Lin W, Sun C, Schatz GC, Zhang HF. Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. J Phys Chem Lett 2021; 12:3914-3921. [PMID: 33861598 PMCID: PMC8607629 DOI: 10.1021/acs.jpclett.1c00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We experimentally investigated several intramolecular coordinate and environmental changes as potential causes of single-molecule fluorescence spectral heterogeneities (smFSH). We developed a high-throughput single-molecule spectroscopy method to analyze more than 5000 single-molecule emission spectra from each of 9 commonly used fluorophores with different structural rigidities and deposited on substrates with different polarities. We observed an unexpectedly high smFSH from structurally rigid Rhodamine B compared with a structurally flexible Cyanine dye-Alexa Fluor 647. Based on experimentally measured smFSH, we ruled out the system's noise uncertainty, single-molecule spectral diffusion, and environmental polarity as the primary causes of the high smFSH. We found that the rotational flexibility of N,N-dialkylated groups contributed to the smFSH. With the high smFSH observed in structurally more rigid model fluorophores, we speculated that other intramolecular coordinate and environmental changes might also contribute to the high smFSH in Rhodamines.
Collapse
Affiliation(s)
- Yang Zhang
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
- Corresponding Author:
| | - Yu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Ki-Hee Song
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
| | - Wei Lin
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Hao F. Zhang
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
| |
Collapse
|
10
|
Kjær C, Langeland J, Lindkvist TT, Sørensen ER, Stockett MH, Kjaergaard HG, Nielsen SB. A new setup for low-temperature gas-phase ion fluorescence spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033105. [PMID: 33820085 DOI: 10.1063/5.0038880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Here, we present a new instrument named LUNA2 (LUminescence iNstrument in Aarhus 2), which is purpose-built to measure dispersed fluorescence spectra of gaseous ions produced by electrospray ionization and cooled to low temperatures (<100 K). LUNA2 is, as an earlier room-temperature setup (LUNA), optimized for a high collection efficiency of photons and includes improvements based on our operational experience with LUNA. The fluorescence cell is a cylindrical Paul trap made of copper with a hole in the ring electrode to permit laser light to interact with the trapped ions, and one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The entrance and exit electrodes are both in physical contact with the liquid-nitrogen cooling unit to reduce cooling times. Mass selection is done in a two-step scheme where, first, high-mass ions are ejected followed by low-mass ions according to the Mathieu stability region. This scheme may provide a higher mass resolution than when only one DC voltage is used. Ions are irradiated by visible light delivered from a nanosecond 20-Hz pulsed laser, and dispersed fluorescence is measured with a spectrometer combined with an iCCD camera that allows intensification of the signal for a short time interval. LUNA2 contains an additional Paul trap that can be used for mass selection before ions enter the fluorescence cell, which potentially is relevant to diminishing RF heating in the cold trap. Successful operation of the setup is demonstrated from experiments with rhodamine dyes and oxazine-4, and spectral changes with temperature are identified.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Emma Rostal Sørensen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
11
|
He T, Yuan Y, Jiang C, Blum NT, He J, Huang P, Lin J. Light‐Triggered Transformable Ferrous Ion Delivery System for Photothermal Primed Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ting He
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Yanyan Yuan
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Chao Jiang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jin He
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
12
|
He T, Yuan Y, Jiang C, Blum NT, He J, Huang P, Lin J. Light-Triggered Transformable Ferrous Ion Delivery System for Photothermal Primed Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:6047-6054. [PMID: 33295682 DOI: 10.1002/anie.202015379] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 01/10/2023]
Abstract
Chemodynamic therapy (CDT) involves the catalytic generation of highly toxic hydroxyl radicals (. OH) from hydrogen peroxide (H2 O2 ) through metal-ion-mediated Fenton or Fenton-like reactions. Fe2+ is a classical catalyst ion, however, it suffers easy oxidation and systemic side-effects. Therefore, the development of a controllable Fe2+ delivery system is a challenge to maintain its valence state, reduce toxicity, and improve therapeutic efficacy. Reported here is a near-infrared (NIR) light-triggered Fe2+ delivery agent (LET-6) for fluorescence (FL) and photoacoustic (PA) dual-modality imaging guided, photothermal primed CDT. Thermal expansion caused by 808 nm laser irradiation triggers the transformation of LET-6 to expose Fe2+ from its hydrophobic layer, which primes the catalytic breakdown of endogenous H2 O2 within the tumor microenvironment, thus generating . OH for enhanced CDT. LET-6 shows remarkable therapeutic effects, both in vitro and in vivo, achieving 100 % tumor elimination after just one treatment. This high-performance Fe2+ delivery system provides a sound basis for future synergistic metal-ion-mediated cancer therapy.
Collapse
Affiliation(s)
- Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yanyan Yuan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Chao Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jin He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
13
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yao Z, Zhang BS, Steinhardt RC, Mills JH, Prescher JA. Multicomponent Bioluminescence Imaging with a π-Extended Luciferin. J Am Chem Soc 2020; 142:14080-14089. [PMID: 32787261 PMCID: PMC7867379 DOI: 10.1021/jacs.0c01064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioluminescence imaging with luciferase-luciferin pairs is commonly used for monitoring biological processes in cells and whole organisms. Traditional bioluminescent probes are limited in scope, though, as they cannot be easily distinguished in biological environments, precluding efforts to visualize multicellular processes. Additionally, many luciferase-luciferin pairs emit light that is poorly tissue penetrant, hindering efforts to visualize targets in deep tissues. To address these issues, we synthesized a set of π-extended luciferins that were predicted to be red-shifted luminophores. The scaffolds were designed to be rotationally labile such that they produced light only when paired with luciferases capable of enforcing planarity. A luciferin comprising an intramolecular "lock" was identified as a viable light-emitting probe. Native luciferases were unable to efficiently process the analog, but a complementary luciferase was identified via Rosetta-guided enzyme design. The unique enzyme-substrate pair is red-shifted compared to well-known bioluminescent tools. The probe set is also orthogonal to other luciferase-luciferin probes and can be used for multicomponent imaging. Four substrate-resolved luciferases were imaged in a single session. Collectively, this work provides the first example of Rosetta-guided design in engineering bioluminescent tools and expands the scope of orthogonal imaging probes.
Collapse
Affiliation(s)
- Zi Yao
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Brendan S. Zhang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Rachel C. Steinhardt
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeremy H. Mills
- Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ, USA
- The Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ, USA
- The Biodesign Institute, Arizona State University, Tempe AZ, USA
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Mazuski RJ, Díaz SA, Wood RE, Lloyd LT, Klein WP, Mathur D, Melinger JS, Engel GS, Medintz IL. Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency. J Phys Chem Lett 2020; 11:4163-4172. [PMID: 32391695 DOI: 10.1021/acs.jpclett.0c01020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
DNA scaffolds enable base-pair-specific positioning of fluorescent molecules, allowing for nanometer-scale precision in controlling multidye interactions. Expanding on this concept, DNA-based molecular photonic wires (MPWs) allow for light harvesting and directional propagation of photonic energy on the nanometer scale. The most common MPW examples exploit Förster resonance energy transfer (FRET), and FRET between the same dye species (HomoFRET) was recently shown to increase the distance and efficiency at which MPWs can function. Although increased proximity between adjacent fluorophores can be used to increase the energy transfer efficiency, FRET assumptions break down as the distance between the dye molecules becomes comparable to their size (∼2 nm). Here we compare dye conjugation with single versus dimer Cy5 dye repeats as HomoFRET MPW components on a double-crossover DNA scaffold. At room temperature (RT) under low-light conditions, end-labeled uncoupled dye molecules provide optimal transfer, while the Cy5 dimers show ultrafast (<100 ps) nonradiative decay that severely limits their functionality. Of particular interest is the observation that through increased excitation fluence as well as cryogenic temperatures, the dimeric MPW shows suppression of the ultrafast decay, demonstrating fluorescence lifetimes similar to the single Cy5 MPWs. This work points to the complex dynamic capabilities of dye-based nanophotonic networks, where dye positioning and interactions can become critical, and could be used to extend the lengths and complexities of such dye-DNA devices, enabling multiparameter nanophotonic circuitry.
Collapse
Affiliation(s)
- Richard J Mazuski
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ryan E Wood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joseph S Melinger
- Electronic Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory S Engel
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
16
|
Shi L, Peng P, Zheng J, Wang Q, Tian Z, Wang H, Li T. I-Motif/miniduplex hybrid structures bind benzothiazole dyes with unprecedented efficiencies: a generic light-up system for label-free DNA nanoassemblies and bioimaging. Nucleic Acids Res 2020; 48:1681-1690. [PMID: 31950160 PMCID: PMC7039006 DOI: 10.1093/nar/gkaa020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
I-motif DNAs have been widely employed as robust modulating components to construct reconfigurable DNA nanodevices that function well in acidic cellular environments. However, they generally display poor interactivity with fluorescent ligands under these complex conditions, illustrating a major difficulty in utilizing i-motifs as the light-up system for label-free DNA nanoassemblies and bioimaging. Towards addressing this challenge, here we devise new types of i-motif/miniduplex hybrid structures that display an unprecedentedly high interactivity with commonly-used benzothiazole dyes (e.g. thioflavin T). A well-chosen tetranucleotide, whose optimal sequence depends on the used ligand, is appended to the 5′-terminals of diverse i-motifs and forms a minimal parallel duplex thereby creating a preferential site for binding ligands, verified by molecular dynamics simulation. In this way, the fluorescence of ligands can be dramatically enhanced by the i-motif/miniduplex hybrids under complex physiological conditions. This provides a generic light-up system with a high signal-to-background ratio for programmable DNA nanoassemblies, illustrated through utilizing it for a pH-driven framework nucleic acid nanodevice manipulated in acidic cellular membrane microenvironments. It enables label-free fluorescence bioimaging in response to extracellular pH change.
Collapse
Affiliation(s)
- Lili Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhijin Tian
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- To whom correspondence should be addressed. Tel: +86 551 63601813;
| |
Collapse
|
17
|
Skonieczny K, Espinoza EM, Derr JB, Morales M, Clinton JM, Xia B, Vullev VI. Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work? PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract“Biomimetic” and “bioinspired” define different aspects of the impacts that biology exerts on science and engineering. Biomimicking improves the understanding of how living systems work, and builds tools for bioinspired endeavors. Biological inspiration takes ideas from biology and implements them in unorthodox manners, exceeding what nature offers. Molecular electrets, i.e. systems with ordered electric dipoles, are key for advancing charge-transfer (CT) science and engineering. Protein helices and their biomimetic analogues, based on synthetic polypeptides, are the best-known molecular electrets. The inability of native polypeptide backbones to efficiently mediate long-range CT, however, limits their utility. Bioinspired molecular electrets based on anthranilamides can overcome the limitations of their biological and biomimetic counterparts. Polypeptide helices are easy to synthesize using established automated protocols. These protocols, however, fail to produce even short anthranilamide oligomers. For making anthranilamides, the residues are introduced as their nitrobenzoic-acid derivatives, and the oligomers are built from their C- to their N-termini via amide-coupling and nitro-reduction steps. The stringent requirements for these reduction and coupling steps pose non-trivial challenges, such as high selectivity, quantitative yields, and fast completion under mild conditions. Addressing these challenges will provide access to bioinspired molecular electrets essential for organic electronics and energy conversion.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Maryann Morales
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jillian M. Clinton
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Bing Xia
- GlaxoSmithKline, 200 Cambridgepark Dr., Cambridge, MA 02140, USA
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Hoche J, Schulz A, Dietrich LM, Humeniuk A, Stolte M, Schmidt D, Brixner T, Würthner F, Mitric R. The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes. Chem Sci 2019; 10:11013-11022. [PMID: 32206253 PMCID: PMC7069518 DOI: 10.1039/c9sc05012d] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM), i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law. This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier.
Collapse
Affiliation(s)
- Joscha Hoche
- Institut für Physikalische und Theoretische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany . ;
| | - Alexander Schulz
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Lysanne Monika Dietrich
- Institut für Physikalische und Theoretische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany . ;
| | - Alexander Humeniuk
- Institut für Physikalische und Theoretische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany . ;
| | - Matthias Stolte
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - David Schmidt
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany . ;
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany . ;
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
19
|
Rietsch P, Witte F, Sobottka S, Germer G, Krappe A, Güttler A, Sarkar B, Paulus B, Resch-Genger U, Eigler S. Diaminodicyanoquinones: Fluorescent Dyes with High Dipole Moments and Electron-Acceptor Properties. Angew Chem Int Ed Engl 2019; 58:8235-8239. [PMID: 30963663 DOI: 10.1002/anie.201903204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/11/2022]
Abstract
Fluorescent dyes are applied in various fields of research, including solar cells and light-emitting devices, and as reporters for assays and bioimaging studies. Fluorescent dyes with an added high dipole moment pave the way to nonlinear optics and polarity sensitivity. Redox activity makes it possible to switch the molecule's photophysical properties. Diaminodicyanoquinone derivatives possess high dipole moments, yet only low fluorescence quantum yields, and have therefore been neglected as fluorescent dyes. Here we investigate the fluorescence properties of diaminodicyanoquinones using a combined theoretical and experimental approach and derive molecules with a fluorescence quantum yield exceeding 90 %. The diaminodicyanoquinone core moiety provides chemical versatility and can be integrated into novel molecular architectures with unique photophysical features.
Collapse
Affiliation(s)
- Philipp Rietsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Felix Witte
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Alexander Krappe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Arne Güttler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1, Division Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Biprajit Sarkar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1, Division Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| |
Collapse
|
20
|
Rietsch P, Witte F, Sobottka S, Germer G, Krappe A, Güttler A, Sarkar B, Paulus B, Resch‐Genger U, Eigler S. Diaminodicyanochinone – Fluoreszenzfarbstoffe mit hohem Dipolmoment und Elektronenakzeptor‐Eigenschaften. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Rietsch
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Felix Witte
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Gregor Germer
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Alexander Krappe
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Arne Güttler
- Bundesanstalt für Materialforschung und -prüfung (BAM) Department 1, Division Biophotonics Richard Willstätter Straße 11 12489 Berlin Deutschland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Beate Paulus
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Ute Resch‐Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM) Department 1, Division Biophotonics Richard Willstätter Straße 11 12489 Berlin Deutschland
| | - Siegfried Eigler
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
21
|
Espinoza EM, Bao D, Krzeszewski M, Gryko DT, Vullev VI. Is it common for charge recombination to be faster than charge separation? INT J CHEM KINET 2019. [DOI: 10.1002/kin.21285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry University of California Riverside California
| | - Duoduo Bao
- Department of Bioengineering University of California Riverside California
| | - Maciej Krzeszewski
- Department of Bioengineering University of California Riverside California
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Daniel T. Gryko
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Valentine I. Vullev
- Department of Chemistry University of California Riverside California
- Department of Bioengineering University of California Riverside California
- Department of Biochemistry University of California Riverside California
- Materials Science and Engineering Program University of California Riverside California
- Instituto de Química Universidade de São Paulo Cidade Universitária São Paulo Brazil
| |
Collapse
|
22
|
Nagamani N, Lakshmanan S, Govindaraj D, Ramamoorthy C, Ramalakshmi N, Arul Antony S. Selective and efficient detection of picric acid among other nitroaromatics by NIR fluorescent cyanine chemosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:321-327. [PMID: 30267977 DOI: 10.1016/j.saa.2018.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Designed and synthesized a fluorescent probe composed of a Hemi cyanine dye bearing conjugated N, N-dimethyl amino benzaldehyde based fluorophore C1 and C2 as a new visible and near-infrared chemo dosimeter type sensor on highly sensitive and selective chemosensors. The color change and quenching of the dye emission are selective detections of picric acid at nanomolar concentration is accomplished in water medium without having any interference from other NAC's. The protonation and deprotonation between N,N-dimethylaniline, and N,N-diethyl aniline units will prompt to the changes in the targeted ICT molecules and the emission response can be detected on distinct NAC. The dyes C1 and C2 set out towards NACs was explored in the THF-H2O medium by UV-vis and fluorescence spectra situated around 560 nm with high molar absorption coefficient. NMR spectroscopic titrations in DMSO‑d6 for affirming the interface between the picric acid with C1 1H NMR was utilized to confirm our proposed mechanism. The as-synthesis of cyanine dyes C1 and C2, involves condensation reaction between (1.0 equiv) of 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium iodide 2 with (1.1 equiv.) p-N,N-dimethyl amino benzaldehyde, and catalytic amount of piperidine in ethanol continued by reflux for 7 h under idle states, in this way giving a facile, convenient and minimal effort strategy for detection of picric acid in solution and in contact mode.
Collapse
Affiliation(s)
- N Nagamani
- Department of Chemistry, Presidency College, Chennai-05, Tamil Nadu, India
| | | | - Dharaman Govindaraj
- Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | | | | | - S Arul Antony
- Department of Chemistry, Presidency College, Chennai-05, Tamil Nadu, India
| |
Collapse
|
23
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
24
|
Xu J, Tong X, Yu P, Wenya GE, McGrath T, Fong MJ, Wu J, Wang ZM. Ultrafast Dynamics of Charge Transfer and Photochemical Reactions in Solar Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800221. [PMID: 30581691 PMCID: PMC6299728 DOI: 10.1002/advs.201800221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/05/2018] [Indexed: 05/31/2023]
Abstract
For decades, ultrafast time-resolved spectroscopy has found its way into an increasing number of applications. It has become a vital technique to investigate energy conversion processes and charge transfer dynamics in optoelectronic systems such as solar cells and solar-driven photocatalytic applications. The understanding of charge transfer and photochemical reactions can help optimize and improve the performance of relevant devices with solar energy conversion processes. Here, the fundamental principles of photochemical and photophysical processes in photoinduced reactions, in which the fundamental charge carrier dynamic processes include interfacial electron transfer, singlet excitons, triplet excitons, excitons fission, and recombination, are reviewed. Transient absorption (TA) spectroscopy techniques provide a good understanding of the energy/electron transfer processes. These processes, including excited state generation and interfacial energy/electron transfer, are dominate constituents of solar energy conversion applications, for example, dye-sensitized solar cells and photocatalysis. An outlook for intrinsic electron/energy transfer dynamics via TA spectroscopic characterization is provided, establishing a foundation for the rational design of solar energy conversion devices.
Collapse
Affiliation(s)
- Jing‐Yin Xu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Gideon Evans Wenya
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Thomas McGrath
- Department of PhysicsLancaster UniversityLancasterLancashireLA14YWUK
| | | | - Jiang Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- Department of Electronic and Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E7JEUK
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
25
|
Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, Vullev VI. How Do Amides Affect the Electronic Properties of Pyrene? ACS OMEGA 2018; 3:12857-12867. [PMID: 31458010 PMCID: PMC6644773 DOI: 10.1021/acsomega.8b01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 05/12/2023]
Abstract
The electronic properties of amide linkers, which are intricate components of biomolecules, offer a wealth of unexplored possibilities. Herein, we demonstrate how the different modes of attaching an amide to a pyrene chromophore affect the electrochemical and optical properties of the chromophore. Thus, although they cause minimal spectral shifts, amide substituents can improve either the electron-accepting or electron-donating capabilities of pyrene. Specifically, inversion of the amide orientation shifts the reduction potentials by 200 mV. These trends indicate that, although amides affect to a similar extent the energies of the ground and singlet excited states of pyrene, the effects on the doublet states of its radical ions are distinctly different. This behavior reflects the unusually strong orientation dependence of the resonance effects of amide substituents, which should extend to amide substituents on other types of chromophores in general. These results represent an example where the Hammett sigma constants fail to predict substituent effects on electrochemical properties. On the other hand, Swain-Lupton parameters are found to be in good agreement with the observed trends. Examination of the frontier orbitals of the pyrene derivatives and their components reveals the underlying reason for the observed amide effects on the electronic properties of this polycyclic aromatic hydrocarbon and points to key molecular-design strategies for electronic and energy-conversion systems.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
| | - John A. Clark
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - James B. Derr
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Duoduo Bao
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Boriana Georgieva
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Frank H. Quina
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
- E-mail: (F.H.Q.)
| | - Valentine I. Vullev
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- E-mail: (V.I.V.)
| |
Collapse
|
26
|
Grimmelsmann L, Schuabb V, Tekin B, Winter R, Nuernberger P. Impact of kilobar pressures on ultrafast triazene and thiacyanine photodynamics. Phys Chem Chem Phys 2018; 20:18169-18175. [DOI: 10.1039/c8cp03334j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Application of high hydrostatic pressure leads to changes in (sub)picosecond emission dynamics, depending on the mechanism at work for the photoreaction.
Collapse
Affiliation(s)
| | - Vitor Schuabb
- Physikalische Chemie I – Biophysikalische Chemie
- Technische Universität Dortmund
- 44227 Dortmund
- Germany
| | - Beritan Tekin
- Physikalische Chemie II
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Roland Winter
- Physikalische Chemie I – Biophysikalische Chemie
- Technische Universität Dortmund
- 44227 Dortmund
- Germany
| | | |
Collapse
|
27
|
Espinoza EM, Larsen-Clinton JM, Krzeszewski M, Darabedian N, Gryko DT, Vullev VI. Bioinspired approach toward molecular electrets: synthetic proteome for materials. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMolecular-level control of charge transfer (CT) is essential for both, organic electronics and solar-energy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | - Maciej Krzeszewski
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Narek Darabedian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Valentine I. Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Vus K, Tarabara U, Kurutos A, Ryzhova O, Gorbenko G, Trusova V, Gadjev N, Deligeorgiev T. Aggregation behavior of novel heptamethine cyanine dyes upon their binding to native and fibrillar lysozyme. MOLECULAR BIOSYSTEMS 2017; 13:970-980. [DOI: 10.1039/c7mb00185a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Novel cyanine dyes can be used for amyloid fibril detection.
Collapse
Affiliation(s)
- Kateryna Vus
- Department of Nuclear and Medical Physics
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Ulyana Tarabara
- Department of Nuclear and Medical Physics
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Atanas Kurutos
- Faculty of Chemistry and Pharmacy
- Sofia University
- Sofia
- Bulgaria
| | - Olga Ryzhova
- Department of Nuclear and Medical Physics
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Galyna Gorbenko
- Department of Nuclear and Medical Physics
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Valeriya Trusova
- Department of Nuclear and Medical Physics
- V.N. Karazin Kharkiv National University
- Kharkiv
- Ukraine
| | - Nikolai Gadjev
- Faculty of Chemistry and Pharmacy
- Sofia University
- Sofia
- Bulgaria
| | | |
Collapse
|
29
|
Jagadesan P, Whittemore T, Beirl T, Turro C, McGrier PL. Excited-State Intramolecular Proton-Transfer Properties of Three Tris(N-Salicylideneaniline)-Based Chromophores with Extended Conjugation. Chemistry 2016; 23:917-925. [PMID: 27859715 DOI: 10.1002/chem.201604315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 01/28/2023]
Abstract
The synthesis and photophysical properties of three tris(N-salicylideneaniline) (TSA) compounds containing 1,3,5-triarylbenzene, -tristyrylbenzene, and -tris(arylethynyl)benzene core units are reported. The TSA compounds underwent efficient excited-state intramolecular proton transfer (ESIPT) in solution and in solid state due to the preformed C=N⋅⋅⋅H-O hydrogen-bonded motifs of the structures. Steady-state fluorescence emission spectra of the TSA molecules revealed dual bands only in DMSO, and large Stokes shifts in other polar aprotic and protic solvents. Femtosecond transient absorption spectroscopic measurements in THF revealed lifetime values in the range of 14-16 ps for the excited-state keto-tautomer. The TSA compounds are also responsive to metal ions (Cu2+ and Zn2+ ) in DMSO, exhibit enhanced aggregate-induced emission (AIE) properties in DMSO/water mixtures, and are highly luminescent in the solid state.
Collapse
Affiliation(s)
- Pradeepkumar Jagadesan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Tyler Whittemore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Toni Beirl
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Claudia Turro
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Psaras L McGrier
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| |
Collapse
|
30
|
Nemkovich NA, Detert H, Roeder N. Electrooptical Absorption Measurements (EOAM) Testify Existence of two Conformers of Prodan and Laurdan with Different Dipole Moments in Equilibrium Ground and Franck-Condon Excited State. J Fluoresc 2016; 26:1563-72. [PMID: 27396483 DOI: 10.1007/s10895-016-1809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/26/2016] [Indexed: 11/24/2022]
Affiliation(s)
- N A Nemkovich
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - H Detert
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany.
| | - N Roeder
- Institute of Organic Chemistry, J. Gutenberg-University of Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| |
Collapse
|
31
|
Karpenko IA, Niko Y, Yakubovskyi VP, Gerasov AO, Bonnet D, Kovtun YP, Klymchenko AS. Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:3002-3009. [PMID: 28491320 PMCID: PMC5421572 DOI: 10.1039/c5tc03411f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fluorescent solvatochromic dyes and molecular rotors increase their popularity as fluorogenic probes for background-free detection of biomolecules in cellulo in no-wash conditions. Here, we introduce a push-pull boron-containing (dioxaborine) dye that presents unique spectroscopic behavior combining solvatochromism and molecular rotor properties. Indeed, in organic solvents, it shows strong red shifts in the absorption and fluorescence spectra upon increase in solvent polarity, typical for push-pull dyes. On the other hand, in polar solvents, where it probably undergoes Twisted Intramolecular Charge Transfer (TICT), the dye displays strong dependence of its quantum yield on solvent viscosity, in accordance to Förster-Hoffmann equation. In comparison to solvatochromic and molecular rotor dyes, dioxaborine derivative shows exceptional extinction coefficient (120,000 M-1 cm-1), high fluorescence quantum yields and red/far-red operating spectral range. It also displays much higher photostability in apolar media as compared to Nile Red, a fluorogenic dye of similar color. Its reactive carboxy derivative has been successfully grafted to carbetocin, a ligand of the oxytocin G protein-coupled receptor. This conjugate exhibits >1000-fold turn on between apolar 1,4-dioxane and water. It targets specifically the oxytocin receptor at the cell surface, which enables receptor imaging with excellent signal-to-background ratio (>130). We believe that presented push-pull dioxaborine dye opens a new page in the development of fluorogenic probes for bioimaging applications.
Collapse
Affiliation(s)
- Iuliia A. Karpenko
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yosuke Niko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Viktor P. Yakubovskyi
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Andriy O. Gerasov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02094 Kyiv, Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
32
|
Skonieczny K, Yoo J, Larsen JM, Espinoza EM, Barbasiewicz M, Vullev VI, Lee CH, Gryko DT. How To Reach Intense Luminescence for Compounds Capable of Excited-State Intramolecular Proton Transfer? Chemistry 2016; 22:7485-96. [PMID: 27062363 DOI: 10.1002/chem.201504944] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 01/03/2023]
Abstract
Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridine and imidazo[1,2-f]phenanthridine skeletons, which mediate excited-state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five-membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady-state and time-resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited-state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited-state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT-capable compounds originates from their enol excited states.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland.,Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jaeduk Yoo
- Department of Chemistry, Kangwon National University, Chuncheon, 23417, Republic of Korea
| | - Jillian M Larsen
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Michał Barbasiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA. .,Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 23417, Republic of Korea.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland.
| |
Collapse
|
33
|
Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties. Molecules 2015; 21:E23. [PMID: 26712725 PMCID: PMC6274575 DOI: 10.3390/molecules21010023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/24/2023] Open
Abstract
Asymmetric monomethine cyanines have been extensively used as probes for nucleic acids among other biological systems. Herein we report the synthesis of seven monomethine cyanine dyes that have been successfully prepared with various heterocyclic moieties such as quinoline, benzoxazole, benzothiazole, dimethyl indole, and benz[e]indole adjoining benz[c,d]indol-1-ium, which was found to directly influence their optical and energy profiles. In this study the optical properties vs. structural changes were investigated using nuclear magnetic resonance and computational approaches. The twisted conformation unique to monomethine cyanines was exploited in DNA binding studies where the newly designed sensor displayed an increase in fluorescence when bound in the DNA grooves compared to the unbound form.
Collapse
|
34
|
Espinoza EM, Xia B, Darabedian N, Larsen JM, Nuñez V, Bao D, Mac JT, Botero F, Wurch M, Zhou F, Vullev VI. Nitropyrene Photoprobes: Making Them, and What Are They Good for? European J Org Chem 2015. [DOI: 10.1002/ejoc.201501339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|