1
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
2
|
James VK, Voss BJ, Helms A, Trent MS, Brodbelt JS. Investigating Lipid Transporter Protein and Lipid Interactions Using Variable Temperature Electrospray Ionization, Ultraviolet Photodissociation Mass Spectrometry, and Collision Cross Section Analysis. Anal Chem 2024; 96:12676-12683. [PMID: 39038171 PMCID: PMC11533218 DOI: 10.1021/acs.analchem.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Gram-negative bacteria develop and exhibit resistance to antibiotics, owing to their highly asymmetric outer membrane maintained by a group of six proteins comprising the Mla (maintenance of lipid asymmetry) pathway. Here, we investigate the lipid binding preferences of one Mla protein, MlaC, which transports lipids through the periplasm. We used ultraviolet photodissociation (UVPD) to identify and characterize modifications of lipids endogenously bound to MlaC expressed in three different bacteria strains. UVPD was also used to localize lipid binding to MlaC residues 130-140, consistent with the crystal structure reported for lipid-bound MlaC. The impact of removing the bound lipid from MlaC on its structure was monitored based on collision cross section measurements, revealing that the protein unfolded prior to release of the lipid. The lipid selectivity of MlaC was evaluated based on titrimetric experiments, indicating that MlaC-bound lipids in various classes (sphingolipids, glycerophospholipids, and fatty acids) as long as they possessed no more than two acyl chains.
Collapse
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bradley J. Voss
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Amanda Helms
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine and Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
4
|
Liu Z, Chen X, Yang S, Tian R, Wang F. Integrated mass spectrometry strategy for functional protein complex discovery and structural characterization. Curr Opin Chem Biol 2023; 74:102305. [PMID: 37071953 DOI: 10.1016/j.cbpa.2023.102305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
The discovery of functional protein complex and the interrogation of the complex structure-function relationship (SFR) play crucial roles in the understanding and intervention of biological processes. Affinity purification-mass spectrometry (AP-MS) has been proved as a powerful tool in the discovery of protein complexes. However, validation of these novel protein complexes as well as elucidation of their molecular interaction mechanisms are still challenging. Recently, native top-down MS (nTDMS) is rapidly developed for the structural analysis of protein complexes. In this review, we discuss the integration of AP-MS and nTDMS in the discovery and structural characterization of functional protein complexes. Further, we think the emerging artificial intelligence (AI)-based protein structure prediction is highly complementary to nTDMS and can promote each other. We expect the hybridization of integrated structural MS with AI prediction to be a powerful workflow in the discovery and SFR investigation of functional protein complexes.
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shirui Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Zhou L, Liu Z, Guo Y, Liu S, Zhao H, Zhao S, Xiao C, Feng S, Yang X, Wang F. Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure. J Am Chem Soc 2023; 145:1285-1291. [PMID: 36584399 DOI: 10.1021/jacs.2c11210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maintaining the protein high-order structures and interactions during the transition from aqueous solution to gas phase is essential to the structural analysis of native mass spectrometry (nMS). Herein, we systematically interrogate the effects of charge state and crown ether (CE) complexation on the gas-phase native-like protein structure by integrating nMS with 193 nm ultraviolet photodissociation (UVPD). The alterations of photofragmentation yields of protein residues and the charge site distribution of fragment ions reveal the specific sites and sequence regions where charge and CE take effect. Our results exhibit the CE complexation on protonated residues can largely alleviate the structure disruption induced by the intramolecular solvation of charged side chains. The influences of CE complexation and positive charge on gas-phase protein structure exhibit generally opposite trends because the CE microsolvation avoids the hydrogen-bonding formation between the charged side chains with backbone carbonyls. Thus, CE complexation leads to a more stable and native-like protein structure in the gas phase.
Collapse
Affiliation(s)
- Lingqiang Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.,CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiwen Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lantz C, Wei B, Zhao B, Jung W, Goring AK, Le J, Miller J, Loo RRO, Loo JA. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc 2022; 144:21826-21830. [PMID: 36441927 PMCID: PMC10017227 DOI: 10.1021/jacs.2c06726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Boyu Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Justin Miller
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Theisen A, Wootton CA, Haris A, Morgan TE, Lam YPY, Barrow MP, O’Connor PB. Enhancing Biomolecule Analysis and 2DMS Experiments by Implementation of (Activated Ion) 193 nm UVPD on a FT-ICR Mass Spectrometer. Anal Chem 2022; 94:15631-15638. [DOI: 10.1021/acs.analchem.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alina Theisen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Anisha Haris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Tomos E. Morgan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Yuko P. Y. Lam
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
9
|
Sipe SN, Jeanne Dit Fouque K, Garabedian A, Leng F, Fernandez-Lima F, Brodbelt JS. Exploring the Conformations and Binding Location of HMGA2·DNA Complexes Using Ion Mobility Spectrometry and 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1092-1102. [PMID: 35687872 PMCID: PMC9274541 DOI: 10.1021/jasms.2c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| |
Collapse
|
10
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Macias LA, Wang X, Davies BW, Brodbelt JS. Mapping paratopes of nanobodies using native mass spectrometry and ultraviolet photodissociation. Chem Sci 2022; 13:6610-6618. [PMID: 35756525 PMCID: PMC9172568 DOI: 10.1039/d2sc01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Following immense growth and maturity of the field in the past decade, native mass spectrometry has garnered widespread adoption for the structural characterization of macromolecular complexes. Routine analysis of biotherapeutics by this technique has become commonplace to assist in the development and quality control of immunoglobulin antibodies. Concurrently, 193 nm ultraviolet photodissociation (UVPD) has been developed as a structurally sensitive ion activation technique capable of interrogating protein conformational changes. Here, UVPD was applied to probe the paratopes of nanobodies, a class of single-domain antibodies with an expansive set of applications spanning affinity reagents, molecular imaging, and biotherapeutics. Comparing UVPD sequence fragments for the free nanobodies versus nanobody·antigen complexes empowered assignment of nanobody paratopes and intermolecular salt-bridges, elevating the capabilities of UVPD as a new strategy for characterization of nanobodies. Ultraviolet photodissociation mass spectrometry is used to probe the paratopes of nanobodies, a class of single-domain antibodies, and to determine intersubunit salt-bridges and explore the nanobody·antigen interfaces.![]()
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Xun Wang
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
12
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Liu Y, Wang K, Wang Y, Wang L, Yan S, Du X, Zhang P, Chen HY, Huang S. Machine Learning Assisted Simultaneous Structural Profiling of Differently Charged Proteins in a Mycobacterium smegmatis Porin A (MspA) Electroosmotic Trap. J Am Chem Soc 2022; 144:757-768. [PMID: 34994548 DOI: 10.1021/jacs.1c09259] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nanopore is emerging as a means of single-molecule protein sensing. However, proteins demonstrate different charge properties, which complicates the design of a sensor that can achieve simultaneous sensing of differently charged proteins. In this work, we introduce an asymmetric electrolyte buffer combined with the Mycobacterium smegmatis porin A (MspA) nanopore to form an electroosmotic flow (EOF) trap. Apo- and holo-myoglobin, which differ in only a single heme, can be fully distinguished by this method. Direct discrimination of lysozyme, apo/holo-myoglobin, and the ACTR/NCBD protein complex, which are basic, neutral, and acidic proteins, respectively, was simultaneously achieved by the MspA EOF trap. To automate event classification, multiple event features were extracted to build a machine learning model, with which a 99.9% accuracy is achieved. The demonstrated method was also applied to identify single molecules of α-lactalbumin and β-lactoglobulin directly from whey protein powder. This protein-sensing strategy is useful in direct recognition of a protein from a mixture, suggesting its prospective use in rapid and sensitive detection of biomarkers or real-time protein structural analysis.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
14
|
Macias LA, Sipe SN, Santos IC, Bashyal A, Mehaffey MR, Brodbelt JS. Influence of Primary Structure on Fragmentation of Native-Like Proteins by Ultraviolet Photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2860-2873. [PMID: 34714071 PMCID: PMC8639798 DOI: 10.1021/jasms.1c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Analysis of native-like protein structures in the gas phase via native mass spectrometry and auxiliary techniques has become a powerful tool for structural biology applications. In combination with ultraviolet photodissociation (UVPD), native top-down mass spectrometry informs backbone flexibility, topology, hydrogen bonding networks, and conformational changes in protein structure. Although it is known that the primary structure affects dissociation of peptides and proteins in the gas phase, its effect on the types and locations of backbone cleavages promoted by UVPD and concomitant influence on structural characterization of native-like proteins is not well understood. Here, trends in the fragmentation of native-like proteins were evaluated by tracking the propensity of 10 fragment types (a, a+1, b, c, x, x+1, y, y-1, Y, and z) in relation to primary structure in a native-top down UVPD data set encompassing >9600 fragment ions. Differing fragmentation trends are reported for the production of distinct fragment types, attributed to a combination of both direct dissociation pathways from excited electronic states and those surmised to involve intramolecular vibrational energy redistribution after internal conversion. The latter pathways were systematically evaluated to evince the role of proton mobility in the generation of "CID-like" fragments through UVPD, providing pertinent insight into the characterization of native-like proteins. Fragmentation trends presented here are envisioned to enhance analysis of the protein higher-order structure or augment scoring algorithms in the high-throughput analysis of intact proteins.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês C Santos
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Blevins MS, Walker JN, Schaub JM, Finkelstein IJ, Brodbelt JS. Characterization of the T4 gp32-ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry. Chem Sci 2021; 12:13764-13776. [PMID: 34760161 PMCID: PMC8549804 DOI: 10.1039/d1sc02861h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Protein-DNA interactions play crucial roles in DNA replication across all living organisms. Here, we apply a suite of mass spectrometry (MS) tools to characterize a protein-ssDNA complex, T4 gp32·ssDNA, with results that both support previous studies and simultaneously uncover novel insight into this non-covalent biological complex. Native mass spectrometry of the protein reveals the co-occurrence of Zn-bound monomers and homodimers, while addition of differing lengths of ssDNA generates a variety of protein:ssDNA complex stoichiometries (1 : 1, 2 : 1, 3 : 1), indicating sequential association of gp32 monomers with ssDNA. Ultraviolet photodissociation (UVPD) mass spectrometry allows characterization of the binding site of the ssDNA within the protein monomer via analysis of holo ions, i.e. ssDNA-containing protein fragments, enabling interrogation of disordered regions of the protein which are inaccessible via traditional crystallographic techniques. Finally, two complementary cross-linking (XL) approaches, bottom-up analysis of the crosslinked complexes as well as MS1 analysis of the intact complexes, are used to showcase the absence of ssDNA binding with the intact cross-linked homodimer and to generate two homodimer gp32 model structures which highlight that the homodimer interface overlaps with the monomer ssDNA-binding site. These models suggest that the homodimer may function in a regulatory capacity by controlling the extent of ssDNA binding of the protein monomer. In sum, this work underscores the utility of a multi-faceted mass spectrometry approach for detailed investigation of non-covalent protein-DNA complexes.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
16
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
Becher S, Wang H, Leeming MG, Donald WA, Heiles S. Influence of protein ion charge state on 213 nm top-down UVPD. Analyst 2021; 146:3977-3987. [PMID: 34009215 DOI: 10.1039/d1an00571e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultraviolet photodissociation (UVPD) is a powerful and rapidly developing method in top-down proteomics. Sequence coverages can exceed those obtained with collision- and electron-induced fragmentation methods. Because of the recent interest in UVPD, factors that influence protein fragmentation and sequence coverage are actively debated in the literature. Here, we performed top-down 213 nm UVPD experiments on a 7 T Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for the model proteins ubiquitin, myoglobin and cytochrome c that were electrosprayed from native, denaturing and supercharging solutions in order to investigate the effect of protein charge states on UVPD fragments. By performing UVPD in ultrahigh vacuum, factors associated with collisional cooling and any ion activation during transfer between mass analyzers can be largely eliminated. Sequence coverage increased from <10% for low charge states to >60% for high charge states for all three proteins. This trend is influenced by the overall charge state, i.e., charges per number of amino acid residues, and to a lesser degree by associated structural changes of protein ions of different charge states based on comparisons to published collision-cross section measurements. To rationalize this finding, and correlate sequence ion formation and identity with the number and location of protons, UVPD results were compared to protonation sites predicted based on electrostatic modelling. Assuming confined protonation sites, these results indicate the presence of two general fragmentation types; i.e., charge remote and charge directed. For moderately high protein charge states, fragment ions mostly originate in regions between likely protonation sites (charge remote), whereas sequence ions of highly charge protein ions occur either near backbone amide protonation sites at low-basicity residues (charge directed) or at charge remote sites (i.e., high-basicity residues). Overall, our results suggest that top-down 213 UVPD performance in the zero-pressure limit depends strongly on protein charge states and protonation sites can influence the location of backbone cleavages.
Collapse
Affiliation(s)
- Simon Becher
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Huixin Wang
- Mark Wainwright Analytical Centre, University of New South Wales, New South Wales, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
18
|
Santos IC, Brodbelt JS. Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1370-1379. [PMID: 33683877 PMCID: PMC8377746 DOI: 10.1021/jasms.1c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous mass spectrometry-based strategies ranging from hydrogen-deuterium exchange to ion mobility to native mass spectrometry have been developed to advance biophysical and structural characterization of protein conformations and determination of protein-ligand interactions. In this study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been the target of countless thermodynamic and kinetic studies owing to its well-characterized active site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis of variations in fragmentation of hCAII versus hCAII-arylsulfonamide complexes, particularly focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein sequence, a supercharging agent was added to the solutions to increase the charge states of the complexes. The three arylsulfonamides examined in this study largely shift the fragmentation patterns in similar ways, despite their differences in binding affinities.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Snyder DT, Lin YF, Somogyi A, Wysocki V. Tandem surface-induced dissociation of protein complexes on an ultrahigh resolution platform. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116503. [PMID: 33889055 PMCID: PMC8057730 DOI: 10.1016/j.ijms.2020.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| | - Arpad Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Vicki Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| |
Collapse
|
20
|
Lermyte F, Theisen A, O'Connor PB. Solution Condition-Dependent Formation of Gas-Phase Protomers of Alpha-Synuclein in Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:364-372. [PMID: 33237779 DOI: 10.1021/jasms.0c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the main characteristics of biomolecular ions in mass spectrometry is their net charge, and a range of approaches exist to either increase or decrease this quantity in the gas phase. In the context of small molecules, it is well known that, in addition to the charge state, the charge site also has a profound effect on an ion's gas-phase behavior; however, this effect has been far less explored for peptides and intact proteins. Methods exist to determine charge sites of protein ions, and others have observed that the interplay of electrostatic repulsion and inherent basicity leads to different sites gaining or losing a charge depending on the total net charge. Here, we report two distinct protonation site isomers ("protomers") of α-synuclein occurring at the same charge state. The protomers showed important differences in their gas-phase fragmentation behavior and were furthermore distinguishable by ion mobility spectrometry. One protomer was produced under standard electrospray conditions, while the other was observed after addition of 10% dimethyl sulfoxide to the protein solution. Charge sites for both protomers were determined using ultraviolet photodissociation.
Collapse
Affiliation(s)
- Frederik Lermyte
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alina Theisen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
21
|
Wan G, Liu G, He J, Luo R, Cheng L, Ma C. Feature wavelength selection and model development for rapid determination of myoglobin content in nitrite-cured mutton using hyperspectral imaging. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
23
|
Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE, Morgenstern KR, Georgiou G, Brodbelt JS. Mapping a Conformational Epitope of Hemagglutinin A Using Native Mass Spectrometry and Ultraviolet Photodissociation. Anal Chem 2020; 92:11869-11878. [PMID: 32867493 PMCID: PMC7808878 DOI: 10.1021/acs.analchem.0c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Mehaffey MR, Ahn YC, Rivera DD, Thomas PW, Cheng Z, Crowder MW, Pratt RF, Fast W, Brodbelt JS. Elusive structural changes of New Delhi metallo-β-lactamase revealed by ultraviolet photodissociation mass spectrometry. Chem Sci 2020; 11:8999-9010. [PMID: 34123154 PMCID: PMC8163344 DOI: 10.1039/d0sc02503h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We use mass spectrometry (MS), under denaturing and non-denaturing solution conditions, along with ultraviolet photodissociation (UVPD) to characterize structural variations in New Delhi metallo-β-lactamase (NDM) upon perturbation by ligands or mutation. Mapping changes in the abundances and distributions of fragment ions enables sensitive detection of structural alterations throughout the protein. Binding of three covalent inhibitors was characterized: a pentafluorphenyl ester, an O-aryloxycarbonyl hydroxamate, and ebselen. The first two inhibitors modify Lys211 and maintain dizinc binding, although the pentafluorophenyl ester is not selective (Lys214 and Lys216 are also modified). Ebselen reacts with the sole Cys (Cys208) and ejects Zn2 from the active site. For each inhibitor, native UVPD-MS enabled simultaneous detection of the closing of a substrate-binding beta-hairpin loop, identification of covalently-modified residue(s), reporting of the metalation state of the enzyme, and in the case of ebselen, observation of the induction of partial disorder in the C-terminus of the protein. Owing to the ability of native UVPD-MS to track structural changes and metalation state with high sensitivity, we further used this method to evaluate the impact of mutations found in NDM clinical variants. Changes introduced by NDM-4 (M154L) and NDM-6 (A233V) are revealed to propagate through separate networks of interactions to direct zinc ligands, and the combination of these two mutations in NDM-15 (M154L, A233V) results in additive as well as additional structural changes. Insight from UVPD-MS helps to elucidate how distant mutations impact zinc affinity in the evolution of this antibiotic resistance determinant. UVPD-MS is a powerful tool capable of simultaneous reporting of ligand binding, conformational changes and metalation state of NDM, revealing structural aspects of ligand recognition and clinical variants that have proven difficult to probe. We use mass spectrometry (MS) along with ultraviolet photodissociation (UVPD) to characterize structural variations in New Delhi metallo-β-lactamase (NDM) upon perturbation by ligands or mutation.![]()
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Yeong-Chan Ahn
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Dann D Rivera
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Pei W Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University Oxford OH 45056 USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University Oxford OH 45056 USA
| | - R F Pratt
- Department of Chemistry, Wesleyan University Middletown CT 06459 USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
25
|
Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1140-1150. [PMID: 32275426 PMCID: PMC7386362 DOI: 10.1021/jasms.0c00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
Collapse
Affiliation(s)
| | - Elisa T Novelli
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Gulan N Xu
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Whitney A Fies
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Blevins MS, Kim D, Crittenden CM, Hong S, Yeh HC, Petty JT, Brodbelt JS. Footprints of Nanoscale DNA-Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS NANO 2019; 13:14070-14079. [PMID: 31755695 PMCID: PMC7047740 DOI: 10.1021/acsnano.9b06470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | | | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:.
| |
Collapse
|
29
|
Sipe SN, Patrick JW, Laganowsky A, Brodbelt JS. Enhanced Characterization of Membrane Protein Complexes by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 92:899-907. [PMID: 31765130 DOI: 10.1021/acs.analchem.9b03689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of chemical chaperones to solubilize membrane protein complexes in aqueous solutions has allowed for gas-phase analysis of their native-like assemblies, including rapid evaluation of stability and interacting partners. Characterization of protein primary sequence, however, has thus far been limited. Ultraviolet photodissociation (UVPD) generates a multitude of sequence ions for the E. coli ammonia channel (AmtB), provides improved localization of a possible post-translational modification of aquaporin Z (AqpZ), and surpasses previous reports of sequence coverage for mechanosensitive channel of large conductance (MscL). Variations in UVPD sequence ion abundance have been shown to correspond to structural changes induced upon some perturbation. Preliminary results are reported here for elucidating increased rigidity or flexibility of MscL when bound to various phospholipids.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - John W Patrick
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
30
|
Cheng L, Liu G, He J, Wan G, Ma C, Ban J, Ma L. Non-destructive assessment of the myoglobin content of Tan sheep using hyperspectral imaging. Meat Sci 2019; 167:107988. [PMID: 32387877 DOI: 10.1016/j.meatsci.2019.107988] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
This study aimed to develop simplified models for rapid and nondestructive monitoring myoglobin contents (DeoMb, MbO2 and MetMb) during refrigerated storage of Tan sheep based on a hyperspectral imaging (HSI) system in the spectral range of 400-1000 nm. Partial least squares regression (PLSR) and least-squares support vector machines (LSSVM) were applied to correlate the spectral data with the reference values of myoglobin contents measured by a traditional method. In order to simplify the LSSVM models, competitive adaptive reweighted sampling (CARS) and Interval variable iterative space shrinkage approach (iVISSA) were used to select key wavelengths. The new CARS-LSSVM models of DeoMb and MbO2 yielded good results, with R2p of 0.810 and 0.914, RMSEP of 1.127 and 2.598, respectively. The best model of MetMb was new iVISSA-CARS-LSSVM, with an R2p of 0.915 and RMSEP of 2.777. The overall results from this study indicated that it was feasible to predict myoglobin contents in Tan sheep using HSI.
Collapse
Affiliation(s)
- Lijuan Cheng
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Guishan Liu
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Jianguo He
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Guoling Wan
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Chao Ma
- School of Physics and Electrical and Electronic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingjing Ban
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Limin Ma
- Non-Destructive Detection Laboratory of Agricultural Products, School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
31
|
Zheng S, Yuan S, Hou Z, Li G, Chen Y, Pan Y, Liu Y, Huang G. Charge-dependent modulation of specific and nonspecific protein-metal ion interactions in nanoelectrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1502-1511. [PMID: 31151135 DOI: 10.1002/rcm.8493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Previous studies found that charge state could affect both specific and nonspecific binding of protein-metal ion interactions in nanoelectrospray ionization mass spectrometry (nESI-MS). However, the two kinds of interactions have been studied individually in spite of the problem that they often coexist in the same system. Thus, it is necessary to study the effects of charge state on specific and nonspecific protein-metal ion interactions in one system to reveal more accurate binding state. METHODS The HIV-1 nucleocapsid protein (NCp7(31-55)) which can bind specifically and nonspecifically to Zn2+ served as the model to show the charge-dependent protein-metal ion interactions. Hydrogen/deuterium exchange (HDX) and photodissociation (PD) were used to demonstrate that specific binding state was correlated with protein structure. In addition to NCp7(31-55), three other model proteins were used to investigate the reason for the charge-dependent nonspecific binding. RESULTS For specific binding, we proposed that protein ions with different charge states had different conformations. The HDX results showed that labile protons in the NCp7(31-55)-Zn complex were exchanged in a charge-state-dependent way. The PD experiments revealed differential fragment yields for different charge states. For nonspecific binding, higher charge states had more Zn2+ additions, but less SO4 2- additions. The effects of charge states on nonspecific binding levels were entirely the opposite for Zn2+ and SO4 2- . These results could reveal that the nonspecific binding was caused by electrostatic interaction. CONCLUSIONS For specific binding, NCp7(31-55) with lower charge states have folding and undenatured structures. The binding states of lower charge states can better reflect more native binding states. For nonspecific binding, when multiple metal ions adduct to proteins, the proteins have more net positive charges, which tend to generate higher charge ions during electrospray.
Collapse
Affiliation(s)
- Shihui Zheng
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Siming Yuan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhuanghao Hou
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongyu Li
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuting Chen
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yangzhong Liu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
32
|
Mehaffey MR, Schardon CL, Novelli ET, Cammarata MB, Webb LJ, Fast W, Brodbelt JS. Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry. Chem Sci 2019; 10:8025-8034. [PMID: 31853358 PMCID: PMC6837035 DOI: 10.1039/c9sc01032g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5'-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing β-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling.
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Christopher L Schardon
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Elisa T Novelli
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Michael B Cammarata
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Lauren J Webb
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| |
Collapse
|
33
|
Zhang W, Wu H, Zhang R, Fang X, Xu W. Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method. Chem Sci 2019; 10:7779-7787. [PMID: 31588326 PMCID: PMC6761862 DOI: 10.1039/c9sc02039j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Measuring the conformations and effective charges of proteins in solution is critical for investigating protein bioactivity, but their rapid analysis remains a challenging problem. Here we report a mobility capillary electrophoresis (MCE) based method for the rapid analysis of protein stereo-structures and effective charges in different solution environments. With the capability of mixture separation, MCE measures the hydrodynamic radius of a protein through Taylor dispersion analysis and its effective charge through ion mobility analysis. The experimental results acquired from MCE are then utilized to restrain molecular dynamics simulations, so that the most probable conformation of that protein can be obtained. As proof-of-concept demonstrations, the charge states and structures of five proteins were analyzed under close to native environments. The conformation transitions and charge state variations of bovine serum albumin and lysozyme under different pH conditions were also investigated. This method is promising for high-throughput protein analysis, which could potentially be coupled with mass spectrometry for investigating protein stereo-structures and functions in top-down proteomics.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Haimei Wu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Rongkai Zhang
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| | - Xiang Fang
- National Institute of Metrology , No. 18, Bei San Huan Dong Lu, Chaoyang Dist , Beijing , China
| | - Wei Xu
- School of Life Science , Beijing Institute of Technology , No. 5 South Zhongguancun Street, Haidian Dist , Beijing , China .
| |
Collapse
|
34
|
Lermyte F, Tsybin YO, O'Connor PB, Loo JA. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1149-1157. [PMID: 31073892 PMCID: PMC6591204 DOI: 10.1007/s13361-019-02201-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
In recent years, there has been increasing interest in top-down mass spectrometry (TDMS) approaches for protein analysis, driven both by technological advancements and efforts such as those by the multinational Consortium for Top-Down Proteomics (CTDP). Today, diverse sample preparation and ionization methods are employed to facilitate TDMS analysis of denatured and native proteins and their complexes. The goals of these studies vary, ranging from protein and proteoform identification, to determination of the binding site of a (non)covalently-bound ligand, and in some cases even with the aim to study the higher order structure of proteins and complexes. Currently, however, no widely accepted terminology exists to precisely and unambiguously distinguish between the different types of TDMS experiments that can be performed. Instead, ad hoc developed terminology is often used, which potentially complicates communication of top-down and allied methods and their results. In this communication, we consider the different types of top-down (or top-down-related) MS experiments that have been performed and reported, and define distinct categories based on the protocol used and type(s) of information that can be obtained. We also consider the different possible conventions for distinguishing between middle- and top-down MS, based on both sample preparation and precursor ion mass. We believe that the proposed framework presented here will prove helpful for researchers to communicate about TDMS and will be an important step toward harmonizing and standardizing this growing field. Graphical Abstract.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Sipe SN, Brodbelt JS. Impact of charge state on 193 nm ultraviolet photodissociation of protein complexes. Phys Chem Chem Phys 2019; 21:9265-9276. [PMID: 31016301 DOI: 10.1039/c9cp01144g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As applications in mass spectrometry continue to expand into the field of structural biology, there have been an increasing number of studies on noncovalent biological assemblies. Ensuring that protein complexes maintain native-like conformations and architectures during the transition from solution to the gas phase is a key aim. Probing composition and arrangement of subunits of multi-charged complexes via tandem mass spectrometry (MS/MS) may lead to protein unfolding and the redistribution of charges on the constituent subunits, leading to asymmetric charge partitioning and ejection of a high-charged monomer. Additionally, the overall dissociation efficiency of many ion activation methods is often suppressed for low charge states, hindering the effectiveness of MS/MS for complexes that have low charge density. Ultraviolet photodissociation (UVPD) of proteins using 193 nm photons is a high-energy alternative to collisional activation and demonstrates little to no charge state dependence. Here the symmetry of charge partitioning upon UVPD is evaluated for an array of multimeric protein complexes as a function of initial charge state. The results demonstrate that high laser energies (3 mJ) for UVPD induces more symmetric charge partitioning and ejection of low-charged, presumably compact monomers than higher-energy collisional dissociation (HCD).
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
36
|
Liu Z, Wang R, Liu J, Sun R, Wang F. Global Quantification of Intact Proteins via Chemical Isotope Labeling and Mass Spectrometry. J Proteome Res 2019; 18:2185-2194. [PMID: 30990045 DOI: 10.1021/acs.jproteome.9b00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although thousands of intact proteins have been feasibly identified in recent years, global quantification of intact proteins is still challenging. Herein, we develop a high-throughput strategy for global intact protein quantification based on chemical isotope labeling. The isotope incorporation efficiency is as high as 99.2% for complex intact protein samples extracted from HeLa cells. Further, the pTop 2.0 software is developed for automated quantification of intact proteoforms in a high-throughput manner. The high quantification accuracy and reproducibility of this strategy have been demonstrated for both standard and complex cellular protein samples. A total of 2283 intact proteoforms originated from 660 protein accessions are successfully quantified under anaerobic and aerobic conditions and the differentially expressed proteins are observed to be involved in the important biological processes such as stress response.
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China
| | - Ruimin Wang
- Institute of Computing Technology , Chinese Academy of Sciences , Beijing , 100190 , China
| | - Jing Liu
- College of Pharmacy , Dalian Medical University , Dalian , 116044 , China
| | - Ruixiang Sun
- Institute of Computing Technology , Chinese Academy of Sciences , Beijing , 100190 , China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China
| |
Collapse
|
37
|
Asami H, Kawabata R, Kawauchi N, Kohno JY. Photodissociation Spectroscopy of Hydrated Myoglobin Ions Isolated by IR-laser Ablation of a Droplet Beam: Recovery from pH-denatured Structure by Gas-phase Isolation. CHEM LETT 2019. [DOI: 10.1246/cl.180884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroya Asami
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Rina Kawabata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Norishi Kawauchi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-ya Kohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
38
|
Theisen A, Black R, Corinti D, Brown JM, Bellina B, Barran PE. Initial Protein Unfolding Events in Ubiquitin, Cytochrome c and Myoglobin Are Revealed with the Use of 213 nm UVPD Coupled to IM-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:24-33. [PMID: 29949061 PMCID: PMC6318241 DOI: 10.1007/s13361-018-1992-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/11/2023]
Abstract
The initial stages of protein unfolding may reflect the stability of the entire fold and can also reveal which parts of a protein can be perturbed, without restructuring the rest. In this work, we couple UVPD with activated ion mobility mass spectrometry to measure how three model proteins start to unfold. Ubiquitin, cytochrome c and myoglobin ions produced via nESI from salty solutions are subjected to UV irradiation pre-mobility separation; experiments are conducted with a range of source conditions which alter the conformation of the precursor ion as shown by the drift time profiles. For all three proteins, the compact structures result in less fragmentation than more extended structures which emerge following progressive in-source activation. Cleavage sites are found to differ between conformational ensembles, for example, for the dominant charge state of cytochrome c [M + 7H]7+, cleavage at Phe10, Thr19 and Val20 was only observed in activating conditions whilst cleavage at Ala43 is dramatically enhanced. Mapping the photo-cleaved fragments onto crystallographic structures provides insight into the local structural changes that occur as protein unfolding progresses, which is coupled to global restructuring observed in the drift time profiles. Graphical Abstract.
Collapse
Affiliation(s)
- Alina Theisen
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Rachelle Black
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", 00185, Rome, Italy
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
39
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Mehaffey MR, Sanders JD, Holden DD, Nilsson CL, Brodbelt JS. Multistage Ultraviolet Photodissociation Mass Spectrometry To Characterize Single Amino Acid Variants of Human Mitochondrial BCAT2. Anal Chem 2018; 90:9904-9911. [PMID: 30016590 PMCID: PMC6323636 DOI: 10.1021/acs.analchem.8b02099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unraveling disease mechanisms requires a comprehensive understanding of how the interplay between higher-order structure and protein-ligand interactions impacts the function of a given protein. Recent advances in native mass spectrometry (MS) involving multimodal or higher-energy activation methods have allowed direct interrogation of intact protein complexes in the gas phase, allowing analysis of both composition and subunit connectivity. We report a multistage approach combining collisional activation and 193 nm ultraviolet photodissociation (UVPD) to characterize single amino acid variants of the human mitochondrial enzyme branched-chain amino acid transferase 2 (BCAT2), a protein implicated in chemotherapeutic resistance in glioblastoma tumors. Native electrospray ionization confirms that both proteins exist as homodimers. Front-end collisional activation disassembles the dimers into monomeric subunits that are further interrogated using UVPD to yield high sequence coverage of the mutated region. Additionally, holo (ligand-bound) fragment ions resulting from photodissociation reveal that the mutation causes destabilization of the interactions with a bound cofactor. This study demonstrates the unique advantages of implementing UVPD in a multistage MS approach for analyzing intact protein assemblies.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - James D. Sanders
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Dustin D. Holden
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Carol L. Nilsson
- Institute of Experimental Medical Sciences, Lund University, SE-221, Lund Sweden
| | | |
Collapse
|
41
|
Crittenden CM, Morrison LJ, Fitzpatrick MD, Myers AP, Novelli ET, Rosenberg J, Akin LD, Srinivasa S, Shear JB, Brodbelt JS. Towards mapping electrostatic interactions between Kdo 2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. Analyst 2018; 143:3607-3618. [PMID: 29968868 PMCID: PMC6056329 DOI: 10.1039/c8an00652k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) have been known to act as multi-modal weapons against Gram-negative bacteria. As a new approach to investigate the nature of the interactions between CAMPs and the surfaces of bacteria, native mass spectrometry and two MS/MS strategies (ultraviolet photodissociation (UVPD) and higher energy collisional activation (HCD)) are used to examine formation and disassembly of saccharolipid·peptide complexes. Kdo2-lipid A (KLA) is used as a model saccharolipid to evaluate complexation with a series of cationic peptides (melittin and three analogs). Collisional activation of the KLA·peptide complexes results in the disruption of electrostatic interactions, resulting in apo-sequence ions with shifts in the distribution of ions compared to the fragmentation patterns of the apo-peptides. UVPD of the KLA·peptide complexes results in both apo- and holo-sequence ions of the peptides, the latter in which the KLA remains bound to the truncated peptide fragment despite cleavage of a covalent bond of the peptide backbone. Mapping both the N- and C-terminal holo-product ions gives insight into the peptide motifs (specifically an electropositive KRKR segment and a proline residue) that are responsible for mediating the electrostatic interactions between the cationic peptides and saccharolipid.
Collapse
Affiliation(s)
| | - Lindsay J Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Mignon D Fitzpatrick
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Allison P Myers
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Elisa T Novelli
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Lucas D Akin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Sorin Srinivasa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jason B Shear
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
42
|
Holden DD, Sanders JD, Weisbrod CR, Mullen C, Schwartz JC, Brodbelt JS. Implementation of Fragment Ion Protection (FIP) during Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Anal Chem 2018; 90:8583-8591. [PMID: 29927232 DOI: 10.1021/acs.analchem.8b01723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultraviolet photodissociation (UVPD) is a nonselective activation method in which both precursor and fragment ions may absorb photons and dissociate. Photoactivation of fragment ions may result in secondary or multiple generations of dissociation, which decreases the signal-to-noise ratio (S/N) of larger fragment ions owing to the prevalent subdivision of the ion current into many smaller, often less informative, fragment ions. Here we report the use of dipolar excitation waveforms to displace fragment ions out of the laser beam path, thus alleviating the extent of secondary dissociation during 193 nm UVPD. This fragment ion protection (FIP) strategy increases S/N of larger fragment ions and improves the sequence coverage obtained for proteins via retaining information deeper into the midsection of protein sequences.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - James D Sanders
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Chad R Weisbrod
- Thermo Fisher Scientific Inc. , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Christopher Mullen
- Thermo Fisher Scientific Inc. , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Jae C Schwartz
- Thermo Fisher Scientific Inc. , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
43
|
Rosenberg J, Parker WR, Cammarata MB, Brodbelt JS. UV-POSIT: Web-Based Tools for Rapid and Facile Structural Interpretation of Ultraviolet Photodissociation (UVPD) Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1323-1326. [PMID: 29626295 PMCID: PMC6004247 DOI: 10.1007/s13361-018-1918-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 05/23/2023]
Abstract
UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.
Collapse
Affiliation(s)
- Jake Rosenberg
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - W Ryan Parker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael B Cammarata
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
44
|
Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Phys Chem Chem Phys 2018; 19:20057-20074. [PMID: 28722742 DOI: 10.1039/c7cp04073c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.
Collapse
|
45
|
Mehaffey MR, Cammarata MB, Brodbelt JS. Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2018; 90:839-846. [PMID: 29188992 PMCID: PMC5750083 DOI: 10.1021/acs.analchem.7b03591] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
46
|
Chan DSH, Kavanagh ME, McLean KJ, Munro AW, Matak-Vinković D, Coyne AG, Abell C. Effect of DMSO on Protein Structure and Interactions Assessed by Collision-Induced Dissociation and Unfolding. Anal Chem 2017; 89:9976-9983. [DOI: 10.1021/acs.analchem.7b02329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel S.-H. Chan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Madeline E. Kavanagh
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J. McLean
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew. W. Munro
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Dijana Matak-Vinković
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony G. Coyne
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chris Abell
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
47
|
Snyder DT, Cooks RG. Single Analyzer Neutral Loss Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation. Anal Chem 2017. [PMID: 28644622 DOI: 10.1021/acs.analchem.7b01963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this follow-up paper to our previous work on single analyzer precursor ion scans in a linear quadrupole ion trap (Snyder, D. T.; Cooks, R. G. Single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation. J. Am. Soc. Mass Spectrom. 2017, DOI: 10.1007/s13361-017-1707-y), we now report the development of single analyzer neutral loss scans in a linear quadrupole ion trap using orthogonal double resonance excitation. Methodologically, there are three key differences between single analyzer precursor ion scans and neutral loss scans under constant radiofrequency (rf) conditions: (1) in the latter experiment, both excitation and ejection frequencies must be scanned, whereas in the former the ejection frequency is fixed, (2) the need to maintain a constant neutral loss while incrementing both precursor and product ion masses, complicated by the complex relationship between secular frequency and mass, requires use of two simultaneous frequency scans, both linear in mass, and (3) because the ejection frequency is scanned, a third ac signal occurring between the ac excitation and ac ejection frequency scans must also be applied and scanned in order to reject artifact peaks caused by ejection of unfragmented precursor ions. Using this methodology, we demonstrate neutral loss scans on a commercial linear ion trap using mixtures of illicit drugs and acylcarnitines. We also demonstrate neutral loss scanning on a Populus deltoides leaf and on a lignin sample, both significantly more complex mixtures.
Collapse
Affiliation(s)
- Dalton T Snyder
- Purdue University Department of Chemistry, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Purdue University Department of Chemistry, West Lafayette, Indiana 47907, United States
| |
Collapse
|
48
|
Riley NM, Westphall MS, Coon JJ. Activated Ion-Electron Transfer Dissociation Enables Comprehensive Top-Down Protein Fragmentation. J Proteome Res 2017; 16:2653-2659. [PMID: 28608681 DOI: 10.1021/acs.jproteome.7b00249] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report the first demonstration of near-complete sequence coverage of intact proteins using activated ion-electron transfer dissociation (AI-ETD), a method that leverages concurrent infrared photoactivation to enhance electron-driven dissociation. AI-ETD produces mainly c/z-type product ions and provides comprehensive (77-97%) protein sequence coverage, outperforming HCD, ETD, and EThcD for all proteins investigated. AI-ETD also maintains this performance across precursor ion charge states, mitigating charge-state dependence that limits traditional approaches.
Collapse
Affiliation(s)
| | | | - Joshua J Coon
- Morgridge Institute for Research , Madison, Wisconsin 53715, United States
| |
Collapse
|
49
|
Cleland TP, DeHart CJ, Fellers RT, VanNispen AJ, Greer JB, LeDuc RD, Parker WR, Thomas PM, Kelleher NL, Brodbelt JS. High-Throughput Analysis of Intact Human Proteins Using UVPD and HCD on an Orbitrap Mass Spectrometer. J Proteome Res 2017; 16:2072-2079. [PMID: 28412815 DOI: 10.1021/acs.jproteome.7b00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.
Collapse
Affiliation(s)
- Timothy P Cleland
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Alexandra J VanNispen
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Joseph B Greer
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States
| | - W Ryan Parker
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University , Evanston, Illinois 60208, United States.,Departments of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University , Evanston, Illinois 60208, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
50
|
Cammarata M, Thyer R, Lombardo M, Anderson A, Wright D, Ellington A, Brodbelt JS. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem Sci 2017; 8:4062-4072. [PMID: 29967675 PMCID: PMC6020862 DOI: 10.1039/c6sc05235e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Native mass spectrometry, size exclusion chromatography, and kinetic assays were employed to study trimethoprim resistance in E. coli caused by mutations P21L and W30R of dihydrofolate reductase.
Pathogenic Escherichia coli, one of the primary causes of urinary tract infections, has shown significant resistance to the most popular antibiotic, trimethoprim (TMP), which inhibits dihydrofolate reductase (DHFR). The resistance is modulated by single point mutations of DHFR. The impact of two clinically relevant mutations, P21L and W30R, on the activity of DHFR was evaluated via measurement of Michaelis–Menten and inhibitory kinetics, and structural characterization was undertaken by native mass spectrometry with ultraviolet photodissociation (UVPD). Compared to WT-DHFR, both P21L and W30R mutants produced less stable complexes with TMP in the presence of co-factor NADPH as evidenced by the relative abundances of complexes observed in ESI mass spectra. Moreover, based on variations in the fragmentation patterns obtained by UVPD mass spectrometry of binary and ternary DHFR complexes, notable structural changes were localized to the substrate binding pocket for W30R and to the M20 loop region as well as the C-terminal portion containing the essential G–H functional loop for the P21L mutant. The results suggest that the mutations confer resistance through distinctive mechanisms. A novel propargyl-linked antifolate compound 1038 was shown to be a reasonably effective inhibitor of the P21L mutant.
Collapse
Affiliation(s)
- Michael Cammarata
- Department of Chemistry , University of Texas , Austin , TX 78712 , USA .
| | - Ross Thyer
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | - Michael Lombardo
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Amy Anderson
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Andrew Ellington
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | | |
Collapse
|