1
|
Fan Z, Li X, Jiang R, Li J, Cao F, Sun M, Wang L. Molecular Dynamics Simulation Reveal the Structure-Activity Relationships of Kainoid Synthases. Mar Drugs 2024; 22:326. [PMID: 39057435 PMCID: PMC11277886 DOI: 10.3390/md22070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Kainoid synthases are key enzymes in the biosynthesis of kainoids. Kainoids, as represented by DA and KA, are a class of naturally occurring non-protein amino acids with strong neurotransmitter activity in the mammalian central nervous system. Marine algae kainoid synthases include PnDabC from diatoms, which synthesizes domoic acid (DA), and DsKabC and GfKabC from red algae, which synthesize kainic acid (KA). Elucidation of the catalytic mechanism of kainoid synthases is of great significance for the rational design of better biocatalysts to promote the industrial production of kainoids for use in new drugs. Through modeling, molecular docking, and molecular dynamics simulations, we investigated the conformational dynamics of kainoid synthases. We found that the kainoid synthase complexes showed different stability in the simulation, and the binding and catalytic processes showed significant conformational transformations of kainoid synthase. The residues involved in specific interactions with the substrate contributed to the binding energy throughout the simulation process. Binding energy, the relaxed active pocket, electrostatic potential energy of the active pocket, the number and rotation of aromatic residues interacting with substrates during catalysis, and the number and frequency of hydrogen bonds between the individual functional groups revealed the structure-activity relationships and affected the degree of promiscuity of kainoid synthases. Our research enriches the understanding of the conformational dynamics of kainoid synthases and has potential guiding significance for their rational design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Z.F.)
| |
Collapse
|
2
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
3
|
Matsuyama T, Togashi K, Nakano M, Sato H, Uchiyama M. Revision of the Peniroquesine Biosynthetic Pathway by Retro-Biosynthetic Theoretical Analysis: Ring Strain Controls the Unique Carbocation Rearrangement Cascade. JACS AU 2023; 3:1596-1603. [PMID: 37388688 PMCID: PMC10301677 DOI: 10.1021/jacsau.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Peniroquesine, a sesterterpenoid featuring a unique 5/6/5/6/5 fused pentacyclic ring system, has been known for a long time, but its biosynthetic pathway/mechanism remains elusive. Based on isotopic labeling experiments, a plausible biosynthetic pathway to peniroquesines A-C and their derivatives was recently proposed, in which the characteristic peniroquesine-type 5/6/5/6/5 pentacyclic skeleton is synthesized from geranyl-farnesyl pyrophosphate (GFPP) via a complex concerted A/B/C-ring formation, repeated reverse-Wagner-Meerwein alkyl shifts, three successive secondary (2°) carbocation intermediates, and a highly distorted trans-fused bicyclo[4.2.1]nonane intermediate. However, our density functional theory calculations do not support this mechanism. By applying a retro-biosynthetic theoretical analysis strategy, we were able to find a preferred pathway for peniroquesine biosynthesis, involving a multistep carbocation cascade including triple skeletal rearrangements, trans-cis isomerization, and 1,3-H shift. This pathway/mechanism is in good agreement with all of the reported isotope-labeling results.
Collapse
Affiliation(s)
- Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Togashi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Moe Nakano
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hajime Sato
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
4
|
Sato H, Nakano M. Concertedness and Activation Energy Control by Distal Methyl Group during Ring Contraction/Expansion in Scalarane-Type Sesterterpenoid Biosynthesis. Chemistry 2023; 29:e202203076. [PMID: 36411271 DOI: 10.1002/chem.202203076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Salmahyritisol A, similan A, and hippospongide A, which are scalarane-type sesterterpenoids, feature 6/6/5/7/5 pentacyclic skeletons. Although their biosyntheses have been previously proposed to involve a unique skeletal rearrangement reaction, the detailed reaction mechanism remains unclear as none of the corresponding biosynthetic enzymes for this reaction have been reported. Herein, this skeletal rearrangement reaction was investigated using computational techniques, which revealed the following four key features: (i) the distal 24-Me substituent controls both the concertedness and activation energy of this transformation, (ii) enzymes are not responsible for the observed regioselectivity of C12-C20 bond formation, (iii) stereoselectivity is enzyme-regulated, and (iv) protonation is a key step in this skeletal rearrangement process. These new findings provide insight into the C-ring-contraction and D-ring-expansion mechanisms in scalarane-type sesterterpenoid biosyntheses.
Collapse
Affiliation(s)
- Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Moe Nakano
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| |
Collapse
|
5
|
Georgiev T, Armanino N. Biomimetic Synthesis of Nor‐Cedrene and Nor‐Isozizaene Sesquiterpenoids and Exploration of Their Olfactive Properties. Chemistry 2022; 28:e202201037. [DOI: 10.1002/chem.202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Tony Georgiev
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Nicolas Armanino
- Fragrance Discovery Research Givaudan Suisse SA Kemptpark 50 8310 Kemptthal Switzerland
| |
Collapse
|
6
|
Zhang Y, Prach LM, O'Brien TE, DiMaio F, Prigozhin DM, Corn JE, Alber T, Siegel JB, Tantillo DJ. Crystal Structure and Mechanistic Molecular Modeling Studies of Mycobacterium tuberculosis Diterpene Cyclase Rv3377c. Biochemistry 2020; 59:4507-4515. [PMID: 33182997 DOI: 10.1021/acs.biochem.0c00762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terpenes make up the largest class of natural products, with extensive chemical and structural diversity. Diterpenes, mostly isolated from plants and rarely prokaryotes, exhibit a variety of important biological activities and valuable applications, including providing antitumor and antibiotic pharmaceuticals. These natural products are constructed by terpene synthases, a class of enzymes that catalyze one of the most complex chemical reactions in biology: converting simple acyclic oligo-isoprenyl diphosphate substrates to complex polycyclic products via carbocation intermediates. Here we obtained the second ever crystal structure of a class II diterpene synthase from bacteria, tuberculosinol pyrophosphate synthase (i.e., Halimadienyl diphosphate synthase, MtHPS, or Rv3377c) from Mycobacterium tuberculosis (Mtb). This enzyme transforms (E,E,E)-geranylgeranyl diphosphate into tuberculosinol pyrophosphate (Halimadienyl diphosphate). Rv3377c is part of the Mtb diterpene pathway along with Rv3378c, which converts tuberculosinol pyrophosphate to 1-tuberculosinyl adenosine (1-TbAd). This pathway was shown to exist only in virulent Mycobacterium species, but not in closely related avirulent species, and was proposed to be involved in phagolysosome maturation arrest. To gain further insight into the reaction pathway and the mechanistically relevant enzyme substrate binding orientation, electronic structure calculation and docking studies of reaction intermediates were carried out. Results reveal a plausible binding mode of the substrate that can provide the information to guide future drug design and anti-infective therapies of this biosynthetic pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Lisa M Prach
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Terrence E O'Brien
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacob E Corn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tom Alber
- Department of Molecular & Cell Biology and QB3 Institute, University of California, Berkeley, California 94720, United States
| | - Justin B Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States.,Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States.,Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
7
|
Zhang F, An T, Tang X, Zi J, Luo HB, Wu R. Enzyme Promiscuity versus Fidelity in Two Sesquiterpene Cyclases (TEAS versus ATAS). ACS Catal 2019. [DOI: 10.1021/acscatal.9b05051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyue An
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiachen Zi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Hai-Bin Luo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Rinkel J, Dickschat JS. Stereochemical investigations on the biosynthesis of achiral ( Z)-γ-bisabolene in Cryptosporangium arvum. Beilstein J Org Chem 2019; 15:789-794. [PMID: 30992727 PMCID: PMC6444425 DOI: 10.3762/bjoc.15.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/21/2019] [Indexed: 02/01/2023] Open
Abstract
A newly identified bacterial (Z)-γ-bisabolene synthase was used for investigating the cyclisation mechanism of the sesquiterpene. Since the stereoinformation of both chiral putative intermediates, nerolidyl diphosphate (NPP) and the bisabolyl cation, is lost during formation of the achiral product, the intriguing question of their absolute configurations was addressed by incubating both enantiomers of NPP with the recombinant enzyme, which resolved in an exclusive cyclisation of (R)-NPP, while (S)-NPP that is non-natural to the (Z)-γ-bisabolene synthase was specifically converted into (E)-β-farnesene. A hypothetical enzyme mechanistic model that explains these observations is presented.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
9
|
Zhou S, Yuan F, Guo M, Wang G, Tang X, Zhao W. Switchable Synthetic Strategy toward Trisubstituted and Tetrasubstituted Exocyclic Alkenes. Org Lett 2018; 20:6710-6714. [DOI: 10.1021/acs.orglett.8b02801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Cool LG, Vermillion KE, Takeoka GR, Wang SC, Tantillo DJ. Biosynthesis and Conformational Properties of the Irregular Sesquiterpenoids Isothapsadiene and β-Isothapsenol. J Org Chem 2018; 83:5724-5730. [PMID: 29684282 DOI: 10.1021/acs.joc.8b00800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A carbocation cyclization/rearrangement mechanism for the biosynthesis of isothapsadiene and β-isothapsenol is shown to be energetically viable on the basis of density functional theory (DFT) calculations. In addition, for both isothapsadiene and β-isothapsenol, variable-temperature NMR experiments reveal two equilibrium conformers that undergo hindered exchange. The identities of these conformers, which are related by a chair-flip, are confirmed by DFT calculations on their structures, energies, 1H and 13C chemical shifts, and interconversion pathways.
Collapse
Affiliation(s)
- Laurence G Cool
- United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States
| | - Karl E Vermillion
- United States Department of Agriculture , Agricultural Research Service , 1815 North University Street , Peoria , Illinois 61604 , United States
| | - Gary R Takeoka
- United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States
| | - Selina C Wang
- Olive Center and Department of Food Science and Technology , University of California-Davis , Davis , California 95616 , United States
| | - Dean J Tantillo
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| |
Collapse
|
11
|
Hirte M, Meese N, Mertz M, Fuchs M, Brück TB. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches. Front Chem 2018; 6:101. [PMID: 29692986 PMCID: PMC5902962 DOI: 10.3389/fchem.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023] Open
Abstract
Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.
Collapse
Affiliation(s)
- Max Hirte
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Nicolas Meese
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Michael Mertz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Wang YH, Zhang F, Zhou J, Xie H, Wu R. Reply to Comment on “Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity”. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Heng Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hujun Xie
- Department
of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310035, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Zhang F, Wang YH, Tang X, Wu R. Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate. Phys Chem Chem Phys 2018; 20:15061-15073. [DOI: 10.1039/c8cp02262c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By QM(DFT)/MM MD simulations, it has been revealed that the non-native substrate catalytic promiscuity of TEAS (one of the sesquiterpene cyclases) is mostly attributable to its notable conformational flexibility of the branching intermediate bisabolyl cation.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong-Heng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
14
|
Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO 2 by Ionic Liquids. Angew Chem Int Ed Engl 2017; 56:13293-13297. [PMID: 28857376 DOI: 10.1002/anie.201706280] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/20/2017] [Indexed: 12/12/2022]
Abstract
A novel strategy based on the concept of preorganization and cooperation has been designed for a superior capacity to capture low-concentration CO2 by imide-based ionic liquids. By using this strategy, for the first time, an extremely high gravimetric CO2 capacity of up to 22 wt % (1.65 mol mol-1 ) and excellent reversibility (16 cycles) have been achieved from 10 vol. % of CO2 in N2 when using an ionic liquid having a preorganized anion. Through a combination of quantum-chemical calculations and spectroscopic investigations, it is suggested that cooperative interactions between CO2 and multiple active sites in the preorganized anion are the driving force for the superior CO2 capacity and excellent reversibility.
Collapse
Affiliation(s)
- Yanjie Huang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guokai Cui
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuling Zhao
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huiyong Wang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiyong Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jianji Wang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
15
|
Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2
by Ionic Liquids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yanjie Huang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Guokai Cui
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Yuling Zhao
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Huiyong Wang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Zhiyong Li
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Sheng Dai
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
- Department of Chemistry; University of Tennessee; Knoxville TN 37996 USA
| | - Jianji Wang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
16
|
Hare SR, Pemberton RP, Tantillo DJ. Navigating Past a Fork in the Road: Carbocation-π Interactions Can Manipulate Dynamic Behavior of Reactions Facing Post-Transition-State Bifurcations. J Am Chem Soc 2017; 139:7485-7493. [PMID: 28504880 DOI: 10.1021/jacs.7b01042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dynamics calculations are described for carbocation rearrangements involving product-forming pathways with post-transition-state bifurcations. We show that noncovalent interactions with associated benzene rings (a simple model of aromatic amino acid side chains) can switch inherent dynamical tendencies for competing modes of disrotation, establishing that meaningful changes in dynamically controlled product selectivity can be achieved with few weak noncovalent interactions.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Ryan P Pemberton
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
17
|
Wedler HB, Newman T, Tantillo DJ. Decarboxylation Facilitated by Carbocation Formation and Rearrangement during Steam Distillation of Vetiver Oil. JOURNAL OF NATURAL PRODUCTS 2016; 79:2744-2748. [PMID: 27676594 DOI: 10.1021/acs.jnatprod.6b00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Density functional theory (DFT) calculations are used to probe the validity of mechanistic proposals for the conversion of isozizanoic acid to 12-norisoziza-5-ene, a reaction that occurs during steam distillation of vetiver oil. While this conversion corresponds overall to a simple decarboxylation, a multistep mechanism involving carbocation intermediates is supported by the computational results.
Collapse
Affiliation(s)
- Henry B Wedler
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - T Newman
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
18
|
Das S, Dixit M, Major DT. First principles model calculations of the biosynthetic pathway in selinadiene synthase. Bioorg Med Chem 2016; 24:4867-4870. [DOI: 10.1016/j.bmc.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 11/29/2022]
|
19
|
Zhang F, Chen N, Zhou J, Wu R. Protonation-Dependent Diphosphate Cleavage in FPP Cyclases and Synthases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
20
|
Rabe P, Klapschinski TA, Dickschat JS. Position-Specific Mass Shift Analysis: A Systematic Method for Investigating the EI-MS Fragmentation Mechanism of epi-Isozizaene. Chembiochem 2016; 17:1333-7. [PMID: 27123899 DOI: 10.1002/cbic.201600237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 11/10/2022]
Abstract
The EI-MS fragmentation mechanism of the bacterial sesquiterpene epi-isozizaene was investigated through enzymatic conversion of all 15 synthetic ((13) C1 )FPP isotopomers with the epi-isozizaene synthase from Streptomyces albus and GC-MS and GC-QTOF analysis including MS-MS. A systematic method, which we wish to call position-specific mass shift analysis, for the identification of the full set of fragmentation reactions was developed.
Collapse
Affiliation(s)
- Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Tim A Klapschinski
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
| |
Collapse
|
21
|
Zhang F, Chen N, Wu R. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS. J Chem Inf Model 2016; 56:877-85. [PMID: 27082764 DOI: 10.1021/acs.jcim.6b00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| |
Collapse
|
22
|
Purino M, Ardiles AE, Callies O, Jiménez IA, Bazzocchi IL. Montecrinanes A–C: Triterpenes with an Unprecedented Rearranged Tetracyclic Skeleton from
Celastrus vulcanicola
. Insights into Triterpenoid Biosynthesis Based on DFT Calculations. Chemistry 2016; 22:7582-91. [DOI: 10.1002/chem.201600294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Martín Purino
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Alejandro E. Ardiles
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
- Departamento de Química Facultad de Ciencias Universidad de Chile Las Palmeras 3425 Ñuñoa, Santiago Chile
| | - Oliver Callies
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica “Antonio González” and Departamento de Química Universidad de La Laguna C/Astrofísico Francisco Sánchez 2 38206 La Laguna, Tenerife Spain
| |
Collapse
|
23
|
O'Brien TE, Bertolani SJ, Tantillo DJ, Siegel JB. Mechanistically informed predictions of binding modes for carbocation intermediates of a sesquiterpene synthase reaction. Chem Sci 2016; 7:4009-4015. [PMID: 30155043 PMCID: PMC6013805 DOI: 10.1039/c6sc00635c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022] Open
Abstract
Sesquiterpenoids comprise a class of terpenoid natural products with thousands of compounds that are highly diverse in structure, generally containing a polycyclic carbon backbone that is constructed by a sesquiterpene synthase. Decades of experimental and computational studies have demonstrated that these enzymes generate a carbocation in the active site, which undergoes a series of structural rearrangements until a product is formed via deprotonation or nucleophile attack. However, for the vast majority of these enzymes the productive binding orientation of the intermediate carbocations has remained unclear. In this work, a method that combines quantum mechanics and computational docking is used to generate an all-atom model of every putative intermediate formed in the context of the enzyme active site for tobacco epi-aristolochene synthase (TEAS). This method identifies a single pathway that links the first intermediate to the last, enabling us to propose the first high-resolution model for the reaction intermediates in the active site of TEAS, and providing testable predictions.
Collapse
Affiliation(s)
- T E O'Brien
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - S J Bertolani
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - D J Tantillo
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - J B Siegel
- Department of Chemistry , University of California Davis , Davis , California , USA . ; .,Department of Biochemistry and Molecular Medicine , University of California Davis , Davis , California , USA.,Genome Center , University of California Davis , Davis , California , USA
| |
Collapse
|
24
|
Hare SR, Tantillo DJ. Dynamic behavior of rearranging carbocations - implications for terpene biosynthesis. Beilstein J Org Chem 2016; 12:377-90. [PMID: 27340434 PMCID: PMC4902080 DOI: 10.3762/bjoc.12.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
This review describes unexpected dynamical behaviors of rearranging carbocations and the modern computational methods used to elucidate these aspects of reaction mechanisms. Unique potential energy surface topologies associated with these rearrangements have been discovered in recent years that are not only of fundamental interest, but also provide insight into the way Nature manipulates chemical space to accomplish specific chemical transformations. Cautions for analyzing both experimental and theoretical data on carbocation rearrangements are included throughout.
Collapse
Affiliation(s)
- Stephanie R Hare
- Department of Chemistry, University of California–Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California–Davis, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
25
|
Dai W, Zhang X, Zhang J, Lin Y, Cao S. Synthesis of Exocyclic Trisubstituted Alkenes
via
Nickel‐ Catalyzed Kumada‐Type Cross‐Coupling Reaction of
gem
‐ Difluoroalkenes with Di‐Grignard Reagents. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500889] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenpeng Dai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China, Fax: (+86)‐21‐64252603; phone: (+86)‐21‐64253452
| | - Xuxue Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China, Fax: (+86)‐21‐64252603; phone: (+86)‐21‐64253452
| | - Juan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China, Fax: (+86)‐21‐64252603; phone: (+86)‐21‐64253452
| | - Yingyin Lin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China, Fax: (+86)‐21‐64252603; phone: (+86)‐21‐64253452
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China, Fax: (+86)‐21‐64252603; phone: (+86)‐21‐64253452
| |
Collapse
|
26
|
Abstract
This review summarises the characterised bacterial terpene cyclases and their products and discusses the enzyme mechanisms.
Collapse
Affiliation(s)
- Jeroen S. Dickschat
- University of Bonn
- Kekulé-Institute of Organic Chemistry and Biochemistry
- 53121 Bonn
- Germany
| |
Collapse
|
27
|
Hong YJ, Tantillo DJ. Tension between Internal and External Modes of Stabilization in Carbocations Relevant to Terpene Biosynthesis: Modulating Minima Depth via C–H···π Interactions. Org Lett 2015; 17:5388-91. [DOI: 10.1021/acs.orglett.5b02740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young J. Hong
- Department
of Chemistry, Univeristy of California—Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department
of Chemistry, Univeristy of California—Davis, Davis, California 95616, United States
| |
Collapse
|
28
|
Challinor VL, Johnston RC, Bernhardt PV, Lehmann RP, Krenske EH, De Voss JJ. Biosynthetic insights provided by unusual sesterterpenes from the medicinal herb Aletris farinosa. Chem Sci 2015; 6:5740-5745. [PMID: 29081941 PMCID: PMC5633834 DOI: 10.1039/c5sc02056e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022] Open
Abstract
A series of novel sesterterpenes (2-6) have been isolated from the roots of Aletris farinosa and structurally characterized by MS, NMR, and X-ray crystallography in conjunction with computational modeling. Their structures provide new insights into the mechanisms of sesterterpene biosynthesis. Specifically, we propose with support from density functional theory computations that the configuration at a single stereocenter determines the fate of a key tetracyclic carbocationic intermediate, derived from an oxidogeranylfarnesol precursor. Whereas one epimer of the carbocation undergoes H+ elimination to give 6, the other undergoes a spectacular cascade of seven 1,2-methyl and hydride migrations leading to the previously unreported carbon skeleton of 5. Theoretical calculations suggest that the cascade is triggered by substrate preorganization in the enzyme active site.
Collapse
Affiliation(s)
- Victoria L Challinor
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane 4072 , Queensland , Australia .
| | - Ryne C Johnston
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane 4072 , Queensland , Australia .
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane 4072 , Queensland , Australia .
| | | | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane 4072 , Queensland , Australia .
| | - James J De Voss
- School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane 4072 , Queensland , Australia .
| |
Collapse
|
29
|
Wedler HB, Pemberton RP, Tantillo DJ. Carbocations and the Complex Flavor and Bouquet of Wine: Mechanistic Aspects of Terpene Biosynthesis in Wine Grapes. Molecules 2015; 20:10781-92. [PMID: 26111168 PMCID: PMC6272345 DOI: 10.3390/molecules200610781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
Computational chemistry approaches for studying the formation of terpenes/terpenoids in wines are presented, using five particular terpenes/terpenoids (1,8-cineole, α-ylangene, botrydial, rotundone, and the wine lactone), volatile compounds (or their precursors) found in wine and/or wine grapes, as representative examples. Through these examples, we show how modern computational quantum chemistry can be employed as an effective tool for assessing the validity of proposed mechanisms for terpene/terpenoid formation.
Collapse
Affiliation(s)
- Henry B Wedler
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Ryan P Pemberton
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Hamlin TA, Hamann CS, Tantillo DJ. Delocalization of Charge and Electron Density in the Humulyl Cation—Implications for Terpene Biosynthesis. J Org Chem 2015; 80:4046-53. [DOI: 10.1021/acs.joc.5b00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department
of Chemistry and Biochemistry, Albright College, 13th and Bern
Streets, Reading, Pennsylvania 19604, United States
| | - Christian S. Hamann
- Department
of Chemistry and Biochemistry, Albright College, 13th and Bern
Streets, Reading, Pennsylvania 19604, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California—Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|