1
|
Bang RS, Verster L, Hong H, Pal L, Velev OD. Colloidal Engineering of Microplastic Capture with Biodegradable Soft Dendritic "Microcleaners". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5923-5933. [PMID: 38428025 DOI: 10.1021/acs.langmuir.3c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The introduction of colloidal principles that enable efficient microplastic collection from aquatic environments is a goal of great environmental importance. Here, we present a novel method of microplastic (MP) collection using biodegradable hydrogel soft dendritic colloids (hSDCs). These dendritic colloids have abundant nanofibrils and a large surface area, which provide an abundance of interfacial interactions and excellent networking capabilities, allowing for the capture of plastic particles and other contaminants. Here, we show how the polymer composition and morphology of the hSDCs can impact the capture of microplastics modeled by latex microbeads. Additionally, we use colloidal DLVO theory to interpret the capture efficiencies of microbeads of different sizes and surface functional groups. The results demonstrate the microplastic remediation efficiency of hydrogel dendricolloids and highlight the primary factors involved in the microbead interactions and adsorption. On a practical level, the results show that the development of environmentally benign microcleaners based on naturally sourced materials could present a sustainable solution for microplastic cleanup.
Collapse
Affiliation(s)
- Rachel S Bang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lucille Verster
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haeleen Hong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Fernandez-Rodriguez MA, Orozco-Barrera S, Sun W, Gámez F, Caro C, García-Martín ML, Rica RA. Hot Brownian Motion of Thermoresponsive Microgels in Optical Tweezers Shows Discontinuous Volume Phase Transition and Bistability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301653. [PMID: 37158287 DOI: 10.1002/smll.202301653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Microgels are soft microparticles that often exhibit thermoresponsiveness and feature a transformation at a critical temperature, referred to as the volume phase transition temperature. Whether this transformation occurs as a smooth or as a discontinuous one is still a matter of debate. This question can be addressed by studying individual microgels trapped in optical tweezers. For this aim, composite particles are obtained by decorating Poly-N-isopropylacrylamide (pNIPAM) microgels with iron oxide nanocubes. These composites become self-heating when illuminated by the infrared trapping laser, performing hot Brownian motion within the trap. Above a certain laser power, a single decorated microgel features a volume phase transition that is discontinuous, while the usual continuous sigmoidal-like dependence is recovered after averaging over different microgels. The collective sigmoidal behavior enables the application of a power-to-temperature calibration and provides the effective drag coefficient of the self-heating microgels, thus establishing these composite particles as potential micro-thermometers and micro-heaters. Moreover, the self-heating microgels also exhibit an unexpected and intriguing bistability behavior above the critical temperature, probably due to partial collapses of the microgel. These results set the stage for further studies and the development of applications based on the hot Brownian motion of soft particles.
Collapse
Affiliation(s)
- Miguel Angel Fernandez-Rodriguez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Laboratory of Surface and Interface Physics, Department of Applied Physics, Faculty of Sciences, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Sergio Orozco-Barrera
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Wei Sun
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Department of Physics, Yanshan University, Qinhuangdao, 066004, China
| | - Francisco Gámez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Carlos Caro
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María L García-Martín
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Bioméadica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/ Severo Ochoa, 35, 29590, Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Raúl Alberto Rica
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
3
|
Aguirre-Manzo LA, González-Mozuelos P. A self-consistent Ornstein-Zernike jellium for highly charged colloids (microgels) in suspensions with added salt. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:275101. [PMID: 34047280 DOI: 10.1088/1361-648x/abfe95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
This work discusses a jellium scheme, built within the framework of the multicomponent Ornstein-Zernike (OZ) equation, which is capable of describing the collective structure of suspensions of highly charged colloids with added salt, even in the presence of finite-size multivalent microions. This approach uses a suitable approximation to decouple the microion-microion correlations from the macroion-microion profiles, which in combination with the methodology from the dressed ion theory (DIT) gives a full account of the electrostatic effective potential among the colloids. The main advantages of the present contribution reside in its ability to manage the short-range potentials and non-linear correlations among the microions, as well as its realistic characterization of the ionic clouds surrounding each macroion. The structure factors predicted by this jellium scheme are contrasted with previously reported experimental results for microgel suspensions with monovalent salts (2019Phys. Rev. E100032602), thus validating its high accuracy in these situations. The present theoretical analysis is then extended to microgel suspensions with multivalent salts, which reveals the prominent influence of the counterion valence on the makeup of the effective potentials. Although the induced differences may be difficult to identify through the mesoscopic structure, our results suggest that the microgel collapsing transition may be used to enhance these distinct effects, thus giving a feasible experimental probe for these phenomena.
Collapse
Affiliation(s)
- L A Aguirre-Manzo
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico
| | - P González-Mozuelos
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico
| |
Collapse
|
4
|
Moncho-Jordá A, Jódar-Reyes AB, Kanduč M, Germán-Bellod A, López-Romero JM, Contreras-Cáceres R, Sarabia F, García-Castro M, Pérez-Ramírez HA, Odriozola G. Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS NANO 2020; 14:15227-15240. [PMID: 33174725 DOI: 10.1021/acsnano.0c05480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eβueff*/Deff* for βueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Ana B Jódar-Reyes
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Matej Kanduč
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Alicia Germán-Bellod
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Juan M López-Romero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Rafael Contreras-Cáceres
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Sarabia
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Miguel García-Castro
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Héctor A Pérez-Ramírez
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| | - Gerardo Odriozola
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| |
Collapse
|
5
|
Kim WK, Chudoba R, Milster S, Roa R, Kanduč M, Dzubiella J. Tuning the selective permeability of polydisperse polymer networks. SOFT MATTER 2020; 16:8144-8154. [PMID: 32935731 DOI: 10.1039/d0sm01083a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the permeability and selectivity ('permselectivity') of model membranes made of polydisperse polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer simulations. In our work, permeability P is determined on the linear-response level using the solution-diffusion model, P = KDin, i.e., by calculating the equilibrium penetrant partition ratio K and penetrant diffusivity Din inside the membrane. We vary two key parameters, namely the network-network interaction, which controls the degree of swelling and collapse of the network, and the network-penetrant interaction, which tunes the selective penetrant uptake and microscopic energy landscape for diffusive transport. We find that the partitioning K covers four orders of magnitude and is a non-monotonic function of the parameters, well interpreted by a second-order virial expansion of the free energy of transferring one penetrant from a reservoir into the membrane. Moreover, we find that the penetrant diffusivity Din in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits relatively simple exponential decays. We propose a semi-empirical scaling law for the penetrant diffusion that describes the simulation data for a wide range of densities and interaction parameters. The resulting permeability P turns out to follow the qualitative behavior (including maximization and minimization) of partitioning. However, partitioning and diffusion are typically anti-correlated, yielding large quantitative cancellations, controlled and fine-tuned by the network density and interactions, as rationalized by our scaling laws. We finally demonstrate that even small changes of network-penetrant interactions, e.g., by half a kBT, modify the permselectivity by almost one order of magnitude.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea.
| | - Richard Chudoba
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany and Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sebastian Milster
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany and Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
| | - Rafael Roa
- Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain
| | - Matej Kanduč
- JoŽef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany and Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany. and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
6
|
Nikam R, Xu X, Kanduč M, Dzubiella J. Competitive sorption of monovalent and divalent ions by highly charged globular macromolecules. J Chem Phys 2020; 153:044904. [DOI: 10.1063/5.0018306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rohit Nikam
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People’s Republic of China
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Applied Theoretical Physics – Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| |
Collapse
|
7
|
Aguirre-Manzo LA, González-Mozuelos P. Volume transition effects on the correlations and effective interactions among highly charged microgels. SOFT MATTER 2020; 16:5081-5093. [PMID: 32458939 DOI: 10.1039/d0sm00486c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent experimental studies have demonstrated the huge influence that the volume phase transition (VPT) has on the collective structure of highly charged thermo-responsive microgels in aqueous solution with low concentrations of added monovalent salt, thus opening a promising new route for controlling the overall properties of practical colloidal suspensions. We present here an analysis of this structure based on the effective electrostatic potential obtained with the exact methodology of the dressed ion theory (DIT). Starting with a description at the primitive model level, we determine the correlations among the components of our model system (macroions plus monovalent anions and cations) by utilizing the two-density integral equation theory, thus allowing us to consider realistic values for the microgel charges. The resulting microgel structure factors show a good agreement with the reported light scattering measurements, whereas the microscopic pair distributions reveal that in this regime the shrunken states promote an enhanced counterion absorption into the microgels. This packing of counterions inside the microgels induces strongly non-linear correlations among the microions, and in turn provokes a substantial weakening of the microgel-microgel correlations. The ensuing effective interactions are then obtained by contracting the description to the level in which only the macroions are present. We find not only that the magnitude and reach of the corresponding pair potentials are markedly inhibited in the shrunken states, but also that their general form diverges from the conventional screened Coulomb shape. This makes it necessary to rethink the concepts of effective charge and screening length.
Collapse
Affiliation(s)
- L A Aguirre-Manzo
- Departamento de Física, Cinvestav del I. P. N., Av., Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico.
| | | |
Collapse
|
8
|
Pérez-Mas L, Martín-Molina A, Quesada-Pérez M. Coarse-grained Monte Carlo simulations of nanogel-polyelectrolyte complexes: electrostatic effects. SOFT MATTER 2020; 16:3022-3028. [PMID: 32129421 DOI: 10.1039/d0sm00173b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coarse-grained Monte-Carlo simulations of nanogel-polyelectrolyte complexes have been carried out. The results presented here capture two phenomena reported in experiments with real complexes: (i) the reduction in size after absorbing just a few chains and (ii) the charge inversion detected through electrophoretic mobility data. Our simulations reveal that charge inversion occurs if the polyelectrolyte charge is large enough. In addition, the distribution of chains inside the nanogel strongly depends on whether charge inversion takes place. It should also be stressed that the chain topology has little influence on most of the properties studied here.
Collapse
Affiliation(s)
- Luis Pérez-Mas
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain.
| | | | | |
Collapse
|
9
|
Aguirre-Manzo LA, Ledesma-Motolinía M, Rojas-Ochoa LF, Trappe V, Callejas-Fernández J, Haro-Pérez C, González-Mozuelos P. Accounting for effective interactions among charged microgels. Phys Rev E 2019; 100:032602. [PMID: 31640009 DOI: 10.1103/physreve.100.032602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 06/10/2023]
Abstract
We introduce a theoretical approach to describe structural correlations among charged permeable spheres at finite particle concentrations. This theory explicitly accounts for correlations among microions and between microions and macroions and allows for the proposal of an effective interaction among macroions that successfully captures structural correlations observed in poly-N-isopropyl acrylamide microgel systems. In our description the bare charge is fixed and independent of the microgel size, the microgel concentration, and the ionic strength, which contrasts with results obtained using linear response approximations, where the bare charge needs to be adapted to properly account for microgel correlations obtained at different conditions.
Collapse
Affiliation(s)
- L A Aguirre-Manzo
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
| | - M Ledesma-Motolinía
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200 Ciudad de México, Mexico
| | - L F Rojas-Ochoa
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
| | - V Trappe
- Departement de Physique, Université de Fribourg, 1700 Fribourg, Switzerland
| | | | - C Haro-Pérez
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200 Ciudad de México, Mexico
| | - P González-Mozuelos
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico
| |
Collapse
|
10
|
Kim WK, Kanduč M, Roa R, Dzubiella J. Tuning the Permeability of Dense Membranes by Shaping Nanoscale Potentials. PHYSICAL REVIEW LETTERS 2019; 122:108001. [PMID: 30932643 DOI: 10.1103/physrevlett.122.108001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Permeability is one of the most fundamental transport properties in soft matter physics, material engineering, and nanofluidics. Here, we report by means of Langevin simulations of ideal penetrants in a nanoscale membrane made of a fixed lattice of attractive interaction sites, how the permeability can be massively tuned, even minimized or maximized, by tailoring the potential energy landscape for the diffusing penetrants, depending on the membrane attraction, topology, and density. Supported by limiting scaling theories we demonstrate that the observed nonmonotonic behavior and the occurrence of extreme values of the permeability is far from trivial and triggered by a strong anticorrelation and substantial (orders of magnitude) cancellation between penetrant partitioning and diffusivity, especially within dense and highly attractive membranes.
Collapse
Affiliation(s)
- Won Kyu Kim
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| | - Matej Kanduč
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Rafael Roa
- Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Ramos-Tejada MDM, Quesada-Pérez M. Coarse-Grained Simulations of Nanogel Composites: Electrostatic and Steric Effects. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- María del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Campus Científico-Tecnológico, 23700 Linares, Jaén, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Campus Científico-Tecnológico, 23700 Linares, Jaén, Spain
| |
Collapse
|
12
|
Moncho-Jordá A, Germán-Bellod A, Angioletti-Uberti S, Adroher-Benítez I, Dzubiella J. Nonequilibrium Uptake Kinetics of Molecular Cargo into Hollow Hydrogels Tuned by Electrosteric Interactions. ACS NANO 2019; 13:1603-1616. [PMID: 30649858 DOI: 10.1021/acsnano.8b07609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hollow hydrogels represent excellent nano- and microcarriers due to their ability to encapsulate and release large amounts of cargo molecules (cosolutes) such as reactants, drugs, and proteins. In this work, we use a combination of a phenomenological effective cosolute-hydrogel interaction potential and dynamic density functional theory to investigate the full nonequilibrium encapsulation kinetics of charged and dipolar cosolutes by an isolated charged hollow hydrogel immersed in a 1:1 electrolyte aqueous solution. Our analysis covers a broad spectrum of cosolute valences ( zc) and electric dipole moments (μc), as well as hydrogel swelling states and hydrogel charge densities. Our calculations show that, close to the collapsed state, the polar cosolutes are predominantly precluded and the encapsulation process is strongly hindered by the excluded-volume interaction exerted by the polymer network. Different equilibrium and kinetic sorption regimes (interface versus interior) are found depending on the value and sign of zc and the value of μc. For cosolutes of the same sign of charge as the gel, the superposition of steric and electrostatic repulsion leads to an "interaction-controlled" encapsulation process, in which the characteristic time to fill the empty core of the hydrogel grows exponentially with zc. On the other hand, for cosolutes oppositely charged to the gel, we find a "diffusion-controlled" kinetic regime, where cosolutes tend to rapidly absorb into the hydrogel membrane and the encapsulation rate depends only on the cosolute diffusion time across the membrane. Finally, we find that increasing μc promotes the appearance of metastable and stable surface adsorption states. For large enough μc, the kinetics enters an "adsorption-hindered diffusion", where the enhanced surface adsorption imposes a barrier and slows down the uptake. Our study represents the first attempt to systematically describe how the swelling state of the hydrogel and other leading physical interaction parameters determine the encapsulation kinetics and the final equilibrium distribution of polar molecular cargo.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
- Departamento de Física Aplicada, Facultad de Ciencias , Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
| | - Alicia Germán-Bellod
- Departamento de Física Aplicada, Facultad de Ciencias , Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
| | | | | | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , D-14109 Berlin , Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg , Hermann-Herder Straße 3 , D-79104 Freiburg , Germany
| |
Collapse
|
13
|
Chudoba R, Heyda J, Dzubiella J. Tuning the collapse transition of weakly charged polymers by ion-specific screening and adsorption. SOFT MATTER 2018; 14:9631-9642. [PMID: 30457144 DOI: 10.1039/c8sm01646a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The experimentally observed swelling and collapse response of weakly charged polymers to the addition of specific salts displays quite convoluted behavior that is not easy to categorize. Here we use a minimalistic implicit-solvent/explicit-salt simulation model with a focus on ion-specific interactions between ions and a single weakly charged polyelectrolyte to qualitatively explain the observed effects. In particular, we demonstrate ion-specific screening and bridging effects cause collapse at low salt concentrations whereas the same strong ion-specific direct interactions drive re-entrant swelling at high concentrations. Consistently with experiments, a distinct salt concentration at which the salting-out power of anions inverts from the reverse to direct Hofmeister series is observed. At this so called isospheric point, the ion-specific effects vanish. Furthermore, with additional simplifying assumptions, an ion-specific mean-field model is developed for the collapse transition which quantitatively agrees with the simulations. Our work demonstrates the sensitivity of the structural behavior of charged polymers to the addition of specific salt beyond simple screening and shall be useful for further guidance of experiments.
Collapse
Affiliation(s)
- Richard Chudoba
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany.
| | | | | |
Collapse
|
14
|
Adroher-Benítez I, Moncho-Jordá A, Odriozola G. Conformation change of an isotactic poly (N-isopropylacrylamide) membrane: Molecular dynamics. J Chem Phys 2018; 146:194905. [PMID: 28527458 DOI: 10.1063/1.4983525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, isotactic Poly (N-Isopropylacrylamide)-PNIPAM-in neat water and in electrolyte solutions is studied by means of molecular dynamics simulations. This is done for an infinitely diluted oligomer and for an assembly of several PNIPAM chains arranged into a planar membrane configuration with a core-shell morphology. We employed two different force fields, AMBER (assisted model building with energy refinement) and OPLS-AA (all atom - optimized potentials for liquid simulations) in combination with extended simple point charge water. Despite the more water insoluble character of isotactic oligomers, our results support the existence of a coil to globule transition for the isolated 30-mer. This may imply the existence of an oligomer rich phase of coil-like structures in equilibrium with a water rich phase for temperatures close but below the coil to globule transition temperature, TΘ. However, the obtained coil structure is much more compact than that corresponding to the syndiotactic chain. Our estimations of TΘ are (308±5) K and (303±5) K for AMBER and OPLS-AA, respectively. The membrane configuration allows one to include chain-chain interactions, to follow density profiles of water, polymer, and solutes, and accessing the membrane-water interface tension. Results show gradual shrinking and swelling of the membrane by switching temperature above and below TΘ, as well as the increase and decrease of the membrane-water interface tension. Finally, concentration profiles for 1M NaCl and 1M NaI electrolytes are shown, depicting a strong salting-out effect for NaCl and a much lighter effect for NaI, in good qualitative agreement with experiments.
Collapse
Affiliation(s)
- Irene Adroher-Benítez
- Departamento de Física Aplicada e Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Arturo Moncho-Jordá
- Departamento de Física Aplicada e Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Gerardo Odriozola
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Ave. San Pablo 180 Col., Reynosa-Tamaulipas, 02200 Ciudad de México, Mexico
| |
Collapse
|
15
|
Pérez-Mas L, Martín-Molina A, Quesada-Pérez M, Moncho-Jordá A. Maximizing the absorption of small cosolutes inside neutral hydrogels: steric exclusion versus hydrophobic adhesion. Phys Chem Chem Phys 2018; 20:2814-2825. [PMID: 29323684 DOI: 10.1039/c7cp07679g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work the equilibrium absorption of nanometric cosolutes (which could represent drugs, reactants, small globular proteins and other kind of biomacromolecules) inside neutral hydrogels is studied. We specially focus on exploring, for different swelling states, the competition between the steric exclusion induced by the cross-linked polymer network constituting the hydrogel, and the solvent-induced short-range hydrophobic attraction between the polymer chains and the cosolute particle. For this purpose, the cosolute partition coefficient is calculated by means of coarse-grained grand canonical Monte Carlo simulations, and the results are compared to theoretical predictions based on the calculation of the excluded and binding volume around the polymer chains. For small hydrophobic attractions or large cosolute sizes, the steric repulsion dominates, and the partition coefficient decreases monotonically with the polymer volume fraction, ϕm. However, for large enough hydrophobic attraction strength, the interplay between hydrophobic adhesion and the steric exclusion leads to a maximum in the partition coefficient at certain intermediate polymer density. Good qualitative and quantitative agreement is achieved between simulation results and theoretical predictions in the limit of small ϕm, pointing out the importance of geometrical aspects of the cross-linked polymer network, even for hydrogels in the swollen state. In addition, the theory is able to predict analytically the onset of the maximum formation in terms of the details of the cosolute-monomer pair interaction, in good agreement with simulations too. Finally, the effect of the many-body attractions between the cosolute and multiple polymer chains is quantified. The results clearly show that these many-body attractions play a very relevant role determining the cosolute binding, enhancing its absorption in more than one order of magnitude.
Collapse
Affiliation(s)
- Luis Pérez-Mas
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, 18001 Granada, Spain
| | | | | | | |
Collapse
|
16
|
Wang ZY, Zhang P, Ma Z. On the physics of both surface overcharging and charge reversal at heterophase interfaces. Phys Chem Chem Phys 2018; 20:4118-4128. [DOI: 10.1039/c7cp08117k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of Monte Carlo simulations are employed to reveal the physics of both surface overcharging and charge reversal at a negatively charged dielectric interface exposed to a bulk solution containing a +2:−1 electrolyte in the absence and presence of a monovalent salt.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Pengli Zhang
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Zengwei Ma
- School of Science
- Chongqing University of Technology
- Chongqing 400054
- China
| |
Collapse
|
17
|
Roa R, Kim WK, Kanduč M, Dzubiella J, Angioletti-Uberti S. Catalyzed Bimolecular Reactions in Responsive Nanoreactors. ACS Catal 2017; 7:5604-5611. [PMID: 28966839 PMCID: PMC5617329 DOI: 10.1021/acscatal.7b01701] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Indexed: 11/28/2022]
Abstract
We describe a general theory for surface-catalyzed bimolecular reactions in responsive nanoreactors, catalytically active nanoparticles coated by a stimuli-responsive "gating" shell, whose permeability controls the activity of the process. We address two archetypal scenarios encountered in this system: the first, where two species diffusing from a bulk solution react at the catalyst's surface, and the second, where only one of the reactants diffuses from the bulk while the other is produced at the nanoparticle surface, e.g., by light conversion. We find that in both scenarios the total catalytic rate has the same mathematical structure, once diffusion rates are properly redefined. Moreover, the diffusional fluxes of the different reactants are strongly coupled, providing a behavior richer than that arising in unimolecular reactions. We also show that, in stark contrast to bulk reactions, the identification of a limiting reactant is not simply determined by the relative bulk concentrations but is controlled by the nanoreactor shell permeability. Finally, we describe an application of our theory by analyzing experimental data on the reaction between hexacyanoferrate(III) and borohydride ions in responsive hydrogel-based core-shell nanoreactors.
Collapse
Affiliation(s)
- Rafael Roa
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Won Kyu Kim
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Matej Kanduč
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Beijing Advanced
Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, People’s Republic of China
| |
Collapse
|
18
|
Kim WK, Moncho-Jordá A, Roa R, Kanduč M, Dzubiella J. Cosolute Partitioning in Polymer Networks: Effects of Flexibility and Volume Transitions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Won Kyu Kim
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Arturo Moncho-Jordá
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva, 18071 Granada, Spain
- Instituto
Carlos I de Física Teórica y Computacional, Facultad
de Ciencias, Universidad de Granada, Avenida Fuente Nueva S/N, 18071 Granada, Spain
| | - Rafael Roa
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matej Kanduč
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
| |
Collapse
|
19
|
Adroher-Benítez I, Martín-Molina A, Ahualli S, Quesada-Pérez M, Odriozola G, Moncho-Jordá A. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge. Phys Chem Chem Phys 2017; 19:6838-6848. [DOI: 10.1039/c6cp08683g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The equilibrium distribution of monovalent and trivalent ions within a thermo-responsive charged nanogel is investigated using Monte Carlo simulations and Ornstein–Zernike equations.
Collapse
Affiliation(s)
- Irene Adroher-Benítez
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18001 Granada
- Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18001 Granada
- Spain
| | - Silvia Ahualli
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18001 Granada
- Spain
| | - Manuel Quesada-Pérez
- Departamento de Física
- Escuela Politécnica Superior de Linares
- Universidad de Jaeén
- 23700 Linares
- Spain
| | - Gerardo Odriozola
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana
- 02200 México CD de México
- Mexico
| | - Arturo Moncho-Jordá
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18001 Granada
- Spain
| |
Collapse
|
20
|
González-Mozuelos P. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte. J Chem Phys 2016; 144:054902. [DOI: 10.1063/1.4941324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P. González-Mozuelos
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360, Mexico
| |
Collapse
|
21
|
Moncho-Jordá A, Dzubiella J. Swelling of ionic microgel particles in the presence of excluded-volume interactions: a density functional approach. Phys Chem Chem Phys 2016; 18:5372-85. [DOI: 10.1039/c5cp07794j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work a new density functional theory framework is developed to predict the salt-concentration dependent swelling state of charged microgels and the local concentration of monovalent ions inside and outside the microgel.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien
- Helmholtz-Zentrum Berlin
- 14109 Berlin
- Germany
- Institut für Physik, Humboldt-Universität zu Berlin
| |
Collapse
|
22
|
Quesada-Pérez M, Ahualli S, Martín-Molina A. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations. J Chem Phys 2015; 141:124903. [PMID: 25273470 DOI: 10.1063/1.4895960] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, coarse-grained simulations of two charged thermo-shrinking nanogels (with degrees of ionization of 0.125 and 0.250) in the presence of 1:1 and 3:1 electrolytes have been explicitly performed through the bead-spring model of polyelectrolyte. In a first set of simulations, salt concentrations for 1:1 and 3:1 electrolytes ranged from 1 to 100 mM and from 0.167 to 16.7 mM, respectively, whereas temperature remained fixed at a value for which hydrophobic forces were negligible in our case (288 K). The sizes of swollen nanogels are smaller when trivalent cations are present, but they do not change significantly in the range of concentrations of 3:1 electrolyte studied here. It should be also stressed that trivalent cations neutralize the nanogel charge more efficiently. According to these results the electrostatic repulsion plays an important role. In a second set of simulations, the temperature varied from 288 to 333 K to study the effect of salt on the thermal response when hydrophobic forces are not negligible. For the nanogels with the lowest degree of ionization, the behavior of the radius with increasing the temperature can be described by a sigmoid function, which shifts towards lower temperatures in the presence of salt. This shift is more clearly observed for trivalent cations, even at low concentrations. For the nanogels with the highest degree of ionization, the effect of additional electrolyte is also noticeable. In this case, hydrophobic forces are not the only responsible for their shrinkage in the presence of trivalent cations. The surface electrostatic potential and the concentration of salt cations inside the nanogel have been computed from simulations and a modified Poisson-Boltzmann (PB) cell model. The thermosensitivity in size have certain influence on the sensitivity of these properties to temperature changes. The rich behavior of the surface electrostatic potential and the uptake of salt cations are successfully predicted by the modified PB cell model proposed (at least qualitatively). Particularly, the model is able to predict how the retention of salt cations depends on their charge and the ionic valence when nanogels shrink.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain
| | - Silvia Ahualli
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain
| | - Alberto Martín-Molina
- Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
23
|
Adroher-Benítez I, Ahualli S, Martín-Molina A, Quesada-Pérez M, Moncho-Jordá A. Role of Steric Interactions on the Ionic Permeation Inside Charged Microgels: Theory and Simulations. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Irene Adroher-Benítez
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Silvia Ahualli
- Departamento
de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain
| | - Alberto Martín-Molina
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Manuel Quesada-Pérez
- Departamento
de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain
| | - Arturo Moncho-Jordá
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
24
|
Colla T, Likos CN, Levin Y. Equilibrium properties of charged microgels: A Poisson-Boltzmann-Flory approach. J Chem Phys 2014; 141:234902. [DOI: 10.1063/1.4903746] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Quesada-Pérez M, Ahualli S, Martín-Molina A. Thermo-responsive gels in the presence of monovalent salt at physiological concentrations: A Monte Carlo simulation study. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física; Escuela Politécnica Superior de Linares, Universidad de Jaén; 23700 Linares Jaén Spain
| | - Silvia Ahualli
- Departamento de Física; Escuela Politécnica Superior de Linares, Universidad de Jaén; 23700 Linares Jaén Spain
| | - Alberto Martín-Molina
- Grupo de Física de Fluidos y Biocoloides; Departamento de Física Aplicada; Facultad de Ciencias, Universidad de Granada; 18071 Granada Spain
| |
Collapse
|
26
|
Ahualli S, Martín-Molina A, Quesada-Pérez M. Excluded volume effects on ionic partitioning in gels and microgels: a simulation study. Phys Chem Chem Phys 2014; 16:25483-91. [DOI: 10.1039/c4cp03314k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An analytical expression accounting for excluded volume effects on ionic partitioning in gels is tested through Monte Carlo simulations.
Collapse
Affiliation(s)
- Silvia Ahualli
- Departamento de Física
- Escuela Politécnica Superior de Linares
- Universidad de Jaén
- Linares, Spain
| | - Alberto Martín-Molina
- Grupo de Física de Fluidos y Biocoloides
- Departamento de Física Aplicada
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física
- Escuela Politécnica Superior de Linares
- Universidad de Jaén
- Linares, Spain
| |
Collapse
|