1
|
Romanov V, Silvani G, Zhu H, Cox CD, Martinac B. An Acoustic Platform for Single-Cell, High-Throughput Measurements of the Viscoelastic Properties of Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005759. [PMID: 33326190 DOI: 10.1002/smll.202005759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Cellular processes including adhesion, migration, and differentiation are governed by the distinct mechanical properties of each cell. Importantly, the mechanical properties of individual cells can vary depending on local physical and biochemical cues in a time-dependent manner resulting in significant inter-cell heterogeneity. While several different methods have been developed to interrogate the mechanical properties of single cells, throughput to capture this heterogeneity remains an issue. Here, single-cell, high-throughput characterization of adherent cells is demonstrated using acoustic force spectroscopy (AFS). AFS works by simultaneously, acoustically driving tens to hundreds of silica beads attached to cells away from the cell surface, allowing the user to measure the stiffness of adherent cells under multiple experimental conditions. It is shown that cells undergo marked changes in viscoelasticity as a function of temperature, by altering the temperature within the AFS microfluidic circuit between 21 and 37 °C. In addition, quantitative differences in cells exposed to different pharmacological treatments specifically targeting the membrane-cytoskeleton interface are shown. Further, the high-throughput format of the AFS is utilized to rapidly probe, in excess of 1000 cells, three different cell lines expressing different levels of a mechanosensitive protein, Piezo1, demonstrating the ability to differentiate between cells based on protein expression levels.
Collapse
Affiliation(s)
- Valentin Romanov
- Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Giulia Silvani
- Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Huiyu Zhu
- Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Charles D Cox
- Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Boris Martinac
- Department of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| |
Collapse
|
2
|
Rheinlaender J, Schäffer TE. Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity. NANOSCALE 2019; 11:6982-6989. [PMID: 30916074 DOI: 10.1039/c8nr09428d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Living cells exhibit complex material properties, which play a crucial role in many aspects of cell function in health and disease, including migration, proliferation, differentiation, and apoptosis. Various techniques exist to probe the viscoelastic material properties of living cells and a frequent observation is a cell-to-cell correlation between average stiffness and fluidity in populations of cells. However, the origin of this correlation is still under discussion. Here, we introduce an imaging technique based on the scanning ion conductance microscope (SICM) to measure the creep compliance of soft samples, which allowed us to generate images of viscoelastic material properties of living cells with high spatial and temporal resolution. We observe a strong subcellular correlation between the local stiffness and fluidity across the individual living cell: stiff regions exhibit lower fluidity while soft regions exhibit higher fluidity. We find that this subcellular correlation is identical to the previously observed cell-to-cell correlation. The subcellular correlation reversibly vanishes after drug-induced disruption of the cytoskeleton, indicating that the subcellular correlation is a property of the intact cytoskeleton of the living cell.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | | |
Collapse
|
3
|
Mechanical phenotyping of K562 cells by the Micropipette Aspiration Technique allows identifying mechanical changes induced by drugs. Sci Rep 2018; 8:1219. [PMID: 29352174 PMCID: PMC5775209 DOI: 10.1038/s41598-018-19563-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Mechanical properties of living cells can be used as reliable markers of their state, such as the presence of a pathological state or their differentiation phase. The mechanical behavior of cells depends on the organization of their cytoskeletal network and the main contribution typically comes from the actomyosin contractile system, in both suspended and adherent cells. In the present study, we investigated the effect of a pharmaceutical formulation (OTC – Ossitetraciclina liquida 20%) used as antibiotic, on the mechanical properties of K562 cells by using the Micropipette Aspiration Technique (MAT). This formulation has been shown to increase in a time dependent way the inflammation and toxicity in terms of apoptosis in in vitro experiments on K562 and other types of cells. Here we show that by measuring the mechanical properties of cells exposed to OTC for different incubation times, it is possible to infer modifications induced by the formulation to the actomyosin contractile system. We emphasize that this system is involved in the first stages of the apoptotic process where an increase of the cortical tension leads to the formation of blebs. We discuss the possible relation between the observed mechanical behavior of cells aspirated inside a micropipette and apoptosis.
Collapse
|
4
|
The role of nuclear mechanics in cell deformation under creeping flows. J Theor Biol 2017; 432:25-32. [DOI: 10.1016/j.jtbi.2017.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022]
|
5
|
Cai P, Takahashi R, Kuribayashi-Shigetomi K, Subagyo A, Sueoka K, Maloney JM, Van Vliet KJ, Okajima T. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population. Biophys J 2017; 113:671-678. [PMID: 28793221 DOI: 10.1016/j.bpj.2017.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023] Open
Abstract
Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G∗). Although the ensemble variation in G∗ of single cells has been elucidated, the detailed temporal variation of G∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale.
Collapse
Affiliation(s)
- PingGen Cai
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Ryosuke Takahashi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | - Agus Subagyo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Sueoka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Khan ZS, Kamyabi N, Hussain F, Vanapalli SA. Passage times and friction due to flow of confined cancer cells, drops, and deformable particles in a microfluidic channel. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5f60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. SOFT MATTER 2015; 11:4584-4591. [PMID: 25891371 DOI: 10.1039/c4sm02718c] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
Collapse
Affiliation(s)
- Fabian M Hecht
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Nicolas Schierbaum
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Wolfgang H Goldmann
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Bober BG, Love JM, Horton SM, Sitnova M, Shahamatdar S, Kannan A, Shah SB. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity. Cytoskeleton (Hoboken) 2015; 72:193-206. [DOI: 10.1002/cm.21219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Brian G. Bober
- Department of Bioengineering; University of California, San Diego; La Jolla California
| | - James M. Love
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Steven M. Horton
- Department of Orthopaedic Surgery; University of California, San Diego; La Jolla California
| | - Mariya Sitnova
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Sina Shahamatdar
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Ajay Kannan
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Sameer B. Shah
- Department of Bioengineering; University of California, San Diego; La Jolla California
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
- Department of Orthopaedic Surgery; University of California, San Diego; La Jolla California
| |
Collapse
|
10
|
Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S, Pagliara S, Ekpenyong A, Jacobi A, Wobus M, Töpfner N, Keyser UF, Mansfeld J, Fischer-Friedrich E, Guck J. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 2015; 12:199-202, 4 p following 202. [DOI: 10.1038/nmeth.3281] [Citation(s) in RCA: 442] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/23/2014] [Indexed: 12/22/2022]
|