1
|
Wang C, Zhao H. Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2439-2464. [PMID: 38279930 DOI: 10.1021/acs.langmuir.3c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
For over two decades, polymer brushes have found wide applications in industry and scientific research. Now, polymer brush research has been a significant research focus in the community of polymer science. In this review paper, we give an introduction to the synthesis, self-assembly, and applications of one-dimensional (1D) polymer brushes on polymer backbones, two-dimensional (2D) polymer brushes on flat surfaces, and three-dimensional (3D) polymer brushes on spherical particles. Examples of the synthesis of polymer brushes on different substrates are provided. Studies on the formation of the surface nanostructures on solid surfaces are also reviewed in this article. Multicomponent polymer brushes on solid surfaces are able to self-assemble into surface micelles (s-micelles). If the s-micelles are linked to the substrates through cleavable linkages, the s-micelles can be cleaved from the substrates, and the cleaved s-micelles are able to self-assemble into hierarchical structures. The formation of the surface nanostructures by coassembly of polymer brushes and "free" polymer chains (coassembly approach) or polymerization-induced surface self-assembly approach, is discussed. The applications of the polymer brushes in colloid and biomedical science are summarized. Finally, perspectives on the development of polymer brushes are offered in this article.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
2
|
Zhang J, Wang Y, Wang J, Yan Y, Li J, Li Z. Self-assembly of an in silico designed dipeptide derivative to obtain photo-responsive vesicles. Phys Chem Chem Phys 2022; 24:27751-27758. [DOI: 10.1039/d2cp03258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photo-responsive vesicles self-assembled from in silico designed peptide derivatives were investigated using coarse-grained molecular dynamics simulations.
Collapse
Affiliation(s)
- Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiawei Li
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Dissipative morphological characteristics of photo-responsive block copolymers driven by time-oscillatory irradiations: An in silico study. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Sarkar S, Sarkar P, Ghosh P. Heteroditopic Macrobicyclic Molecular Vessels for Single Step Aerial Oxidative Transformation of Primary Alcohol Appended Cross Azobenzenes. J Org Chem 2021; 86:6648-6664. [PMID: 33908241 DOI: 10.1021/acs.joc.1c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of oxy-ether tris-amino heteroditopic macrobicycles (L1-L4) with various cavity dimensions have been synthesized and explored for their Cu(II) catalyzed selective single step aerial oxidative cross-coupling of primary alcohol based anilines with several aromatic amines toward the formation of primary alcohol appended cross azobenzenes (POCABs). The beauty of this transformation is that the easily oxidizable benzyl/primary alcohol group remains unhampered during the course of this oxidation due to the protective oxy-ether pocket of this series of macrobicyclic vessels. Various dimensionalities of the molecular vessels have shown specific size complementary selection for substrates toward efficient syntheses of regioselective POCAB products. To establish the requirement of the three-dimensional cavity based additives, a particular catalytic reaction has been examined in the presence of macrobicycles (L2 and L3) versus macrocycles (MC1 and MC2) and tripodal acyclic (AC1 and AC2) analogous components, respectively. Subsequently, L1-L4 have been extensively utilized toward the syntheses of as many as 44 POCABs and are characterized by different spectroscopic techniques and single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
5
|
Klaja O, Frank JA, Trauner D, Bondar AN. Potential energy function for a photo-switchable lipid molecule. J Comput Chem 2020; 41:2336-2351. [PMID: 32749723 DOI: 10.1002/jcc.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 11/06/2022]
Abstract
Photo-switchable lipids are synthetic lipid molecules used in photo-pharmacology to alter membrane lateral pressure and thus control opening and closing of mechanosensitive ion channels. The molecular picture of how photo-switchable lipids interact with membranes or ion channels is poorly understood. To facilitate all-atom simulations that could provide a molecular picture of membranes with photo-switchable lipids, we derived force field parameters for atomistic computations of the azobenzene-based fatty acid FAAzo-4. We implemented a Phyton-based algorithm to make the optimization of atomic partial charges more efficient. Overall, the parameters we derived give good description of the equilibrium structure, torsional properties, and non-bonded interactions for the photo-switchable lipid in its trans and cis intermediate states, and crystal lattice parameters for trans-FAAzo-4. These parameters can be extended to all-atom descriptions of various photo-switchable lipids that have an azobenzene moiety.
Collapse
Affiliation(s)
- Oskar Klaja
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Berlin, Germany
| | - James A Frank
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York, USA
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Pang J, Mao X, Xu J, Zhao X, Kong J, Hu X. Design, synthesis, and investigation of a visible light-driven photo-switching macromolecule. RSC Adv 2020; 10:35164-35173. [PMID: 35515657 PMCID: PMC9056821 DOI: 10.1039/d0ra06627c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
The application of azobenzene (AZO) as a kind of photo-switch is restricted by its excitation source, i.e., UV light. Hence, visible light-driven azobenzene-based photo-switching is needed and has been designed in the work. In order to forecast the optimal triggered wavelength, the electrostatic potential, theoretical UV-vis spectra, as well as the energy gap for focused structures was calculated to describe the energy and orbit status of the molecules by DFT. According to the theoretical optimization results, m-Methyl Red (m-MR) containing copolymer was successfully synthesized as a visible light-driven photo-switch. Further, for performance evaluation, the efficiency and effectiveness of different excitation wavelengths was firstly evaluated for the copolymer using m-MR and m-Methyl Red acrylic anhydride (m-MRAA) as the controls. Compared with m-MR and m-MRAA, the copolymer exhibited outstanding characteristics as a photo-switch according to its response–recovery behavior. At the same time, blue light proved to be the most efficient excitation light source. Moreover, the equilibrium response time and recovery time showed some dependence on the excitation wavelength. Secondly, the influence of the light intensity on the isomerization transition was investigated. A relatively low light density could lead to a relatively low degree of the final cis form and needed more equilibrium time for trans to cis transformation but showed little effect on the recovery process. Thirdly, repeatable on/off irradiation was used to evaluate the fatigue resistance of the copolymer. Good fatigue resistance without photobleaching was verified from the results. Fourthly, the influence of the solvent on visible light-driven isomerization was also evaluated. Finally, the synthesized copolymer still had the characteristic of a pH indicator with a critical point at pH 5.0 and exhibited an obvious fluorescent characteristic. The application of azobenzene (AZO) as a kind of photo-switch is restricted by its excitation source, i.e., UV light.![]()
Collapse
Affiliation(s)
- Juan Pang
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| | - Xincheng Mao
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| | - Jialin Xu
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| | - Xiang Zhao
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| | - Jingyang Kong
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| | - Xiaohong Hu
- School of Material Engineering
- Jinling Institute of Technology
- Nanjing
- China
| |
Collapse
|
7
|
Liu H, Liu Y, Shang Y, Liu H. Molecular dynamics simulation for drug delivery in azobenzene-containing membranes. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1699655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hengjiang Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Yazhuo Shang
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Bochicchio D, Kwangmettatam S, Kudernac T, Pavan GM. How Defects Control the Out-of-Equilibrium Dissipative Evolution of a Supramolecular Tubule. ACS NANO 2019; 13:4322-4334. [PMID: 30875196 DOI: 10.1021/acsnano.8b09523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Supramolecular architectures that work out-of-equilibrium or that can change in specific ways when absorbing external energy are ubiquitous in nature. Gaining the ability to create via self-assembly artificial materials possessing such fascinating behaviors would have a major impact in many fields. However, the rational design of similar dynamic structures requires to understand and, even more challenging, to learn how to master the molecular mechanisms governing how the assembled systems evolve far from the equilibrium. Typically, this represents a daunting challenge due to the limited molecular insight that can be obtained by the experiments or by classical modeling approaches. Here we combine coarse-grained molecular models and advanced simulation approaches to study at submolecular (<5 Å) resolution a supramolecular tubule, which breaks and disassembles upon absorption of light energy triggering isomerization of its azobenzene-containing monomers. Our approach allows us to investigate the molecular mechanism of monomer transition in the assembly and to elucidate the kinetic process for the accumulation of the transitions in the system. Despite the stochastic nature of the excitation process, we demonstrate how these tubules preferentially dissipate the absorbed energy locally via the amplification of defects in their supramolecular structure. We find that this constitutes the best kinetic pathway for accumulating monomer transitions in the system, which determines the dynamic evolution out-of-equilibrium and the brittle behavior of the assembly under perturbed conditions. Thanks to the flexibility of our models, we finally come out with a general principle, where defects explain and control the brittle/soft behavior of such light-responsive assemblies.
Collapse
Affiliation(s)
- Davide Bochicchio
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| | - Supaporn Kwangmettatam
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology , University of Twente , PO Box 207, 7500 AE Enschede , The Netherlands
| | - Tibor Kudernac
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology , University of Twente , PO Box 207, 7500 AE Enschede , The Netherlands
| | - Giovanni M Pavan
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , Galleria 2, Via Cantonale 2c , CH-6928 Manno , Switzerland
| |
Collapse
|
9
|
|
10
|
Pang J, Gao Z, Tan H, Mao X, Wang H, Hu X. Design, Synthesis, Investigation, and Application of a Macromolecule Photoswitch. Front Chem 2019; 7:86. [PMID: 30873401 PMCID: PMC6403147 DOI: 10.3389/fchem.2019.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/31/2019] [Indexed: 11/18/2022] Open
Abstract
Azobenzene (AZO) has attracted increasing interest due to its reversible structural change upon a light stimulus. However, poor fatigue durability and the photobleaching phenomenon restricts its further application. Herein, the AZO domain as a pendent group, was incorporated into copolymers, which was synthesized by radical copolymerization in the research. Structure-properties of synthesized copolymer can be adjusted by monomer ratios. Emphatically, responsive properties of copolymer in different solutions were investigated. In the DMSO solution, copolymer exhibited effective structural change, stable rapid responsive time (1 min) upon UV light at room temperature, stable relative acceptable recovery time (100 min) upon white light at room temperature, and good fatigue resistance property. In an aqueous solution, even more controllable responsive properties and fatigue resistance properties for copolymer were verified by results. More pervasively, the recovery process could be controlled by light density and temperature. In order to clarify reasons for the difference between the AZO molecule and the AZO domain of copolymer, energy barrier or interactions between single atoms or even structural units was calculated using the density functional theory (DFT). Furthermore, the status of copolymer was characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). Finally, copolymer was further functionalized with bioactive protein (concanavalin, ConA) to reduce the cytotoxicity of the AZO molecule.
Collapse
Affiliation(s)
- Juan Pang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Ziyu Gao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huaping Tan
- Biomaterials for Organogenesis Laboratory, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xincheng Mao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huiming Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
11
|
Sarkar S, Sarkar P, Ghosh P. Selective Single-Step Oxidation of Amine to Cross-Azo Compounds with an Unhampered Primary Benzyl Alcohol Functionality. Org Lett 2018; 20:6725-6729. [PMID: 30350675 DOI: 10.1021/acs.orglett.8b02829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This is the first report of a single-step synthesis of primary benzyl alcohol containing different cross-azo compounds (14 examples) by Cu(II) in the presence of a newly synthesized amino-ether heteroditopic macrobicycle cage. Interestingly, even with extreme conditions, the benzyl alcohol remains unoxidized by the Cu(II) catalyst due to the protective etherial pocket of the cage.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Piyali Sarkar
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S.C. Mullick Road , Kolkata 700032 , India
| | - Pradyut Ghosh
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S.C. Mullick Road , Kolkata 700032 , India
| |
Collapse
|
12
|
Pang J, Gao Z, Zhang L, Wang H, Hu X. Synthesis and Characterization of Photoresponsive Macromolecule for Biomedical Application. Front Chem 2018; 6:217. [PMID: 30013963 PMCID: PMC6036227 DOI: 10.3389/fchem.2018.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Azobenzene, a photo switcher, has attracted increasing interest due to its structural response to photo stimulus in the field of information science and chemical sensing in the recent decades. However, limited water solubility and cytotoxicity restrained their applications in the biomedical field. In research, HA-AZO has been designed as a water soluble photo switcher in biomedical application. Synthesized HA-AZO had good water-solubility and a stable π-π* transition absorbance peak trans-isomer. With exposure to UV, transformation from trans-isomer to cis-isomer of HA-AZO could be realized according to UV spectra. Reversely, trans-isomer could be gradually recovered from cis-isomer in the dark. Simultaneously, quick response and slow recovery could be detected in the process of structural change. Moreover, repeated illumination was further used to detect the antifatigue property of HA-AZO, which showed no sign of fatigue during 20 circles. The influence of pH value on UV spectrum for HA-AZO was investigated in the work. Importantly, in acid solution, HA-AZO no longer showed any photoresponsive property. Additionally, the status of HA-AZO under the effect of UV light was investigated by DLS results and TEM image. Finally, in vitro cytotoxicity evaluations were performed to show the effects of photoresponsive macromolecule on cells.
Collapse
Affiliation(s)
- Juan Pang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Ziyu Gao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Long Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Huiming Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| | - Xiaohong Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
13
|
Wang P, Kang W, Tian S, Yin X, Zhao Y, Hou X, Zhang X, Yang H. A responsive anionic wormlike micelle using pH-directed release of stored sodium based on polybasic acids. SOFT MATTER 2018; 14:5031-5038. [PMID: 29862407 DOI: 10.1039/c8sm00944a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in anionic surfactant systems. Here a differential pH-responsive wormlike micelle based on sulfonic surfactants was developed, which is formed by mixing sodium dodecyl trioxyethylene sulphate (SDES) and ethylenediaminetetraacetic acid tetrasodium (EDTA4-·4Na+) at the molar ratio of 1 : 1. The phase behavior, aggregate microstructure and viscoelasticity of the SDES/EDTA4-·4Na+ solution were investigated via macroscopic observation, cryo-TEM and rheological measurements. It was found that the phase behavior of the SDES/EDTA4-·4Na+ solution undergoes transitions from a water-like fluid to viscoelastic upon decreasing the pH. On decreasing the pH from 12.01 to 3.27 by adding HCl, the viscosity of the transparent solutions with wormlike micelles was increased rapidly and reached ∼3100 mPa s. Furthermore, on increasing the pH by adding NaOH, the viscosity was slightly increased due to the addition of Na+. However, the increase in the concentration of Na+ is much smaller than the theoretical addition. The same phenomenon was noted in the sodium citrate solution, but does not exist in the sodium formate system. The viscosity of the micellar solution has a sensitive response to inorganic acids and tolerance to inorganic bases due to the characteristics of polybasic acids.
Collapse
Affiliation(s)
- Pengxiang Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Danov KD, Kralchevsky PA, Stoyanov SD, Cook JL, Stott IP, Pelan EG. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment. Adv Colloid Interface Sci 2018; 256:1-22. [PMID: 29804690 DOI: 10.1016/j.cis.2018.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, CiEj. Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency.
Collapse
|
15
|
Montagna M, Guskova O. Photosensitive Cationic Azobenzene Surfactants: Thermodynamics of Hydration and the Complex Formation with Poly(methacrylic acid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:311-321. [PMID: 29228776 DOI: 10.1021/acs.langmuir.7b03638] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this computational work, we investigate the photosensitive cationic surfactants with the trimethylammonium or polyamine hydrophilic head and the azobenzene-containing hydrophobic tail. The azobenzene-based molecules are known to undergo a reversible trans-cis-trans isomerization reaction when subjected to UV-visible light irradiation. Combining the density functional theory and the all-atom molecular dynamics simulations, the structural and the hydration properties of the trans- and the cis-isomers and their interaction with the oppositely charged poly(methacrylic acid) in aqueous solution are investigated. We establish and quantify the correlations of the molecular structure and the isomerization state of the surfactants and their hydrophilicity/hydrophobicity and the self-assembling altered by light. For this reason, we compare the hydration free energies of the trans- and the cis-isomers. Moreover, the investigations of the interaction strength between the azobenzene molecules and the polyanion provide additional elucidations of the recent experimental and theoretical studies on the light triggered reversible deformation behavior of the microgels and the polymer brushes loaded with azobenzene surfactants.
Collapse
Affiliation(s)
- Maria Montagna
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|
16
|
Xu J, Wang Z, Gao J, Li C, Sun S, Hu S. Dissipative particle dynamics simulations reveal the pH-driven micellar transition pathway of monorhamnolipids. J Colloid Interface Sci 2017; 506:493-503. [DOI: 10.1016/j.jcis.2017.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
|
17
|
Wang P, Tan J, Pei S, Wang J, Zhang Y, Sun X, Zhang J. Dual effects of cationic surfactant on the wormlike micelle formation of catanionic surfactants mixtures: An experiment and simulation study. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Lei L, Xie D, Song B, Jiang J, Pei X, Cui Z. Photoresponsive Foams Generated by a Rigid Surfactant Derived from Dehydroabietic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7908-7916. [PMID: 28735541 DOI: 10.1021/acs.langmuir.7b00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Innovation in the structure of surfactants is crucial to the construction of a surfactant-based system with intriguing properties. With dehydroabietic acid as a starting material, a nearly totally rigid azobenzene surfactant (R-azo-Na) was synthesized. The trans-R-azo-Na formed stable foams with half-lives of 636, 656, 976, and 872 min for 0.3, 1, 2, and 4 mmol·L-1 aqueous solutions, respectively. Under UV light irradiation, a fast collapse of the foams was observed, showing an in situ response. The excellent foam stability of trans-R-azo-Na leads to the extremely high photoresponsive efficiency. As revealed by dynamic surface tension and pulsed-field gradient NMR methods, an obvious energy barrier existed in the adsorption/desorption process of trans-R-azo-Na on the air/water interface. The foams formed by trans-R-azo-Na are thus stable against coarsening processes. The results reveal the unique photoresponsive behavior of a surfactant with a rigid hydrophobic skeleton and provide new insights into the structure causing aggregation of surfactants.
Collapse
Affiliation(s)
- Lan Lei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Danhua Xie
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry and Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University , Ningde, Fujian 352100, China
| | - Binglei Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Jianzhong Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Xiaomei Pei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Zhenggang Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Study on the transformation from linear to branched wormlike micelles: An insight from molecular dynamics simulation. J Colloid Interface Sci 2017; 494:47-53. [DOI: 10.1016/j.jcis.2017.01.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
|
20
|
Kang W, Wang P, Fan H, Yang H, Dai C, Yin X, Zhao Y, Guo S. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure. SOFT MATTER 2017; 13:1182-1189. [PMID: 28098315 DOI: 10.1039/c6sm02655a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC22AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC22AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.
Collapse
Affiliation(s)
- Wanli Kang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China. and EOR Research Institute, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Pengxiang Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Haiming Fan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Hongbin Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Caili Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Xia Yin
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yilu Zhao
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Shujun Guo
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
21
|
Wang P, Pei S, Wang M, Yan Y, Sun X, Zhang J. Coarse-grained molecular dynamics study on the self-assembly of Gemini surfactants: the effect of spacer length. Phys Chem Chem Phys 2017; 19:4462-4468. [DOI: 10.1039/c6cp07690d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work provides a molecular-level understanding of the underlying mechanism of the self-assembly of Gemini surfactants.
Collapse
Affiliation(s)
- Pan Wang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Shuai Pei
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Muhan Wang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Youguo Yan
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| | - Xiaoli Sun
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
| | - Jun Zhang
- College of Science
- China University of Petroleum
- 266580 Qingdao
- People's Republic of China
- Key Laboratory of New Energy Physics & Materials Science in Universities of Shandong
| |
Collapse
|
22
|
Lin C, Yang L, Xu M, An Q, Xiang Z, Liu X. Properties and applications of designable and photo/redox dual responsive surfactants with the new head group 2-arylazo-imidazolium. RSC Adv 2016. [DOI: 10.1039/c6ra04448d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2-Arylazo-imidazolium grafted imidazolium surfactants with structural extensibility and reversible responsiveness to photo and electrochemical stimuli for further usage in a sol–gel process.
Collapse
Affiliation(s)
- Changxu Lin
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- College of Physical Science and Technology
- Xiamen University
- 361005 Xiamen
| | - Long Yang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- College of Physical Science and Technology
- Xiamen University
- 361005 Xiamen
| | - Mengchun Xu
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- College of Physical Science and Technology
- Xiamen University
- 361005 Xiamen
| | - Qi An
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
- China
| | - Zheng Xiang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- College of Physical Science and Technology
- Xiamen University
- 361005 Xiamen
| | - Xiangyang Liu
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- College of Physical Science and Technology
- Xiamen University
- 361005 Xiamen
| |
Collapse
|
23
|
De Nicola A, Kawakatsu T, Rosano C, Celino M, Rocco M, Milano G. Self-Assembly of Triton X-100 in Water Solutions: A Multiscale Simulation Study Linking Mesoscale to Atomistic Models. J Chem Theory Comput 2015; 11:4959-71. [DOI: 10.1021/acs.jctc.5b00485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio De Nicola
- Dipartimento
di Chimica e Biologia, Università di Salerno, I-84084 via
Ponte don Melillo, Salerno, Italy
| | - Toshihiro Kawakatsu
- Department
of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Camillo Rosano
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10 I-16132 Genova, Italy
| | - Massimo Celino
- ENEA, C.R. Casaccia, Via Anguillarese 301, I-00123 Roma, Italy
| | - Mattia Rocco
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10 I-16132 Genova, Italy
| | - Giuseppe Milano
- Dipartimento
di Chimica e Biologia, Università di Salerno, I-84084 via
Ponte don Melillo, Salerno, Italy
- IMAST S.c.a.r.l.
Technological District in Polymer and Composite Engineering, P. leBovio 22, I-80133, Napoli, Italy
| |
Collapse
|