1
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
2
|
Ciou HY, Chen XH, Chung FY, Tang CC, Jan JS. Effect of β-motif, chain length and topology on polypeptide-templated mesoporous silicas through biomimetic mineralization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Hladysh S, Oleshchuk D, Dvořáková J, Šeděnková I, Filipová M, Pobořilová Z, Pánek J, Proks V. Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. J Appl Polym Sci 2021. [DOI: 10.1002/app.52099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sviatoslav Hladysh
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Diana Oleshchuk
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science Charles University in Prague Prague 2 Czech Republic
| | - Jana Dvořáková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Ivana Šeděnková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Zuzana Pobořilová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| |
Collapse
|
4
|
Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J. pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5249-5258. [PMID: 32286845 DOI: 10.1021/acs.jafc.9b08171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pH-stimuli amphiphilic lignin-based copolymer was prepared, and it could self-assemble to form spherical nanomicelles with the addition of "switching" water. The morphology, structure, and physical properties of micelles were characterized with transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle-size analysis, and zeta-potential measurement. In vitro drug release exemplified that the micelles were pH-sensitive, retaining more than 84.36% ibuprofen (IBU) in simulated gastric fluid (pH 1.5) and presenting a smooth release of 81.81% IBU in simulated intestinal fluid (pH 7.4) within 72 h. Cell culture studies showed that the nanomicelles were biocompatible and boosted the proliferation of human bone marrow stromal cells hBMSC and mouse embryonic fibroblast cells NIH-3T3. Interestingly, the nanomicelles inhibited the survival of human colon cancer cells HT-29 with a final survival rate of only 5.34%. Therefore, this work suggests a novel strategy to synthesize intelligent lignin-based nanomicelles that show a great potential as oral drug carriers.
Collapse
Affiliation(s)
- Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Bin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaofei Nie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yanan Yin
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shibo Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
5
|
Hsu FM, Hu MH, Jiang YS, Lin BY, Hu JJ, Jan JS. Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110923. [PMID: 32409073 DOI: 10.1016/j.msec.2020.110923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/15/2022]
Abstract
We report an efficient growth factor delivering system based on polypeptide/heparin composite hydrogels for wound healing application. Linear and star-shaped poly(l-lysine) (l-PLL and s-PLL) were chosen due to not only their cationic characteristics, facilitating the efficient complexation of negatively charged heparin, but also the ease to tune the physical and mechanical properties of as-prepared hydrogels simply by varying polypeptide topology and chain length. The results showed that polymer topology can be an additional parameter to tune hydrogel properties. Our experimental data showed that these composite hydrogels exhibited low hemolytic activity and good cell compatibility as well as excellent antibacterial activity, making them ideal as wound dressing materials. Unlike other heparin-based hydrogels, these composite hydrogels with heparin densely deposited on the surface can increase the stabilization and concentration of growth factor, which can facilitate the healing process as confirmed by our in vivo animal model. We believe that these PLL/heparin composite hydrogels are promising wound dressing materials and may have potential applications in other biomedical fields.
Collapse
Affiliation(s)
- Fang-Ming Hsu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Hsien Hu
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da-Yeh University, Changhua, Taiwan; Orthopedic Department, Showchwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
6
|
pH-responsive nanoparticles based on optimized synthetic amphiphilic poly(β-amino esters) for doxorubicin delivery. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
TRAIL encapsulated to polypeptide-crosslinked nanogel exhibits increased anti-inflammatory activities in Klebsiella pneumoniae-induced sepsis treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:85-95. [DOI: 10.1016/j.msec.2019.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
|
8
|
Chen IH, Chen YF, Liou JH, Lai JT, Hsu CC, Wang NY, Jan JS. Green synthesis of gold nanoparticle/gelatin/protein nanogels with enhanced bioluminescence/biofluorescence. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110101. [PMID: 31546461 DOI: 10.1016/j.msec.2019.110101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022]
Abstract
Here we report the green synthesis of gelatin/protein hybrid nanogels containing gold nanoparticles (AuNPs) that collectively exhibit metal-enhanced luminescence/fluorescence (MEL/MEF). The gelatin/protein nanogels, prepared by genipin cross-linking of preformed gelatin/protein polyion complexes (PICs), exhibited sizes ranging between 50 and 200 nm, depending on the weight ratio of gelatin and protein. These nanogels serve as reducing and stabilizing agents for the AuNPs, allowing for nucleation in a gel network that exhibits colloidal stability and MEL/MEF. AuNP/gelatin/HRP and AuNP/gelatin/LTF nanogels presented an ~11-fold enhancement of bioluminescence in an HRP-luminol system and a ~50-fold fluorescence enhancement when compared to free LTF in cell uptake experiments. These hybrid nanogels show promise for optically enhanced diagnosis and other therapeutic applications.
Collapse
Affiliation(s)
- I-Hsiu Chen
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Jhih-Han Liou
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Chia-Chen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Nai-Yi Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30052, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No 1, University Rd., Tainan 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
9
|
Synthesis of silica/polypeptide hybrid nanomaterials and mesoporous silica by molecular replication of sheet-like polypeptide complexes through biomimetic mineralization. J Colloid Interface Sci 2019; 542:243-252. [DOI: 10.1016/j.jcis.2019.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 11/19/2022]
|
10
|
Chen F, Li Y, Fu Y, Hou Y, Chen Y, Luo X. The synthesis and co-micellization of PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) as shell cross-linked drug carriers with target/redox properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:276-294. [PMID: 30556773 DOI: 10.1080/09205063.2018.1558486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to obtain target/redox shell cross-linked micelles (TCM), copolymers poly(ε-caprolactone)-poly(2-hydroxyethyl methacrylate/methacrylate-alpha lipoic acid) and poly(ε-caprolactone)-poly(2-hydroxyethyl methacrylate/methacrylate-folate, PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) were designed and synthesized. The copolymers PCL-P(HEMA/HEMA-LA) could form reduction-sensitive cross-linked micelles (CM) by using a catalytic amount of DTT. The micelles maintained high stability against dilution but were destroyed in 10 mM dithiothreitol (DTT). The drug loaded content (DLC) of CM was 8.9%, which was almost twice as much as non-cross-linked micelle (NCM). In vitro drug release at pH 7.4 showed that the cumulative release rate of CM in 36 h was less than 30%, while it was about 50% for NCM. When PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) (FA 1%, 3% and 5%) formed target/redox micelles, IC50 of TCM with FA 3% was the lowest (1.4 µg/mL) to Hela cells with excessive expression folate receptors. The cell uptake of TCM by Hela cells is higher than target non-cross-linked micelles (TNCM), while there was not much difference between both micelles uptaken by A549 cells, which are lack of folate receptors. Therefore, the drug carriers of TCM have potential to be explored as shell cross-linked target/redox drug carriers to the cancer cells on the surface with excessive folate receptors.
Collapse
Affiliation(s)
- Fan Chen
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yi Li
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Ye Fu
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yu Hou
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yuanwei Chen
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Xianglin Luo
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China.,b State Key Lab of Polymer Materials Engineering , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
11
|
Insua I, Petit M, Blackman LD, Keogh R, Pitto‐Barry A, O'Reilly RK, Peacock AFA, Krachler AM, Fernandez‐Trillo F. Structural Determinants of the Stability of Enzyme-Responsive Polyion Complex Nanoparticles Targeting Pseudomonas aeruginosa's Elastase. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2018; 4:807-814. [PMID: 30263883 PMCID: PMC6146907 DOI: 10.1002/cnma.201800054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Here, we report how the stability of polyion complex (PIC) particles containing Pseudomonas aeruginosa's elastase (LasB) degradable peptides and antimicrobial poly(ethylene imine) is significantly improved by careful design of the peptide component. Three LasB-degradable peptides are reported herein, all of them carrying the LasB-degradable sequence -GLA- and for which the number of anionic amino acids and cysteine units per peptide were systematically varied. Our results suggest that while net charge and potential to cross-link via disulfide bond formation do not have a predictable effect on the ability of LasB to degrade these peptides, a significant effect of these two parameters on particle preparation and stability is observed. A range of techniques has been used to characterize these new materials and demonstrates that increasing the charge and cross-linking potential of the peptides results in PIC particles with better stability in physiological conditions and upon storage. These results highlight the importance of molecular design for the preparation of PIC particles and should underpin the future development of these materials for responsive drug delivery.
Collapse
Affiliation(s)
- Ignacio Insua
- School of ChemistryUniversity of BirminghamEdgbastonB15 2TTUK
- Institute of Microbiology and Infection – School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Marion Petit
- School of ChemistryUniversity of BirminghamEdgbastonB15 2TTUK
| | | | - Robert Keogh
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Anaïs Pitto‐Barry
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current address: School of Chemistry and BiosciencesUniversity of BradfordBradfordBD7 1DP
| | | | | | - Anne Marie Krachler
- Institute of Microbiology and Infection – School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
- Current address: Department of Microbiology and Molecular GeneticsUniversity of Texas Health Science CenterHouston (TX)USA
| | - Francisco Fernandez‐Trillo
- School of ChemistryUniversity of BirminghamEdgbastonB15 2TTUK
- Institute of Microbiology and Infection – School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
12
|
Sim T, Lim C, Cho YH, Lee ES, Youn YS, Oh KT. Development of pH-sensitive nanogels for cancer treatment using crosslinked poly(aspartic acid- graft-imidazole)- block-poly(ethylene glycol). J Appl Polym Sci 2018. [DOI: 10.1002/app.46268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taehoon Sim
- College of Pharmacy; Chung-Ang University; 84 Heukseok-Ro, Dongjak, Seoul 06974 South Korea
| | - Chaemin Lim
- College of Pharmacy; Chung-Ang University; 84 Heukseok-Ro, Dongjak, Seoul 06974 South Korea
| | - Young Hun Cho
- College of Pharmacy; Chung-Ang University; 84 Heukseok-Ro, Dongjak, Seoul 06974 South Korea
| | - Eun Seong Lee
- Department of Biotechnology; The Catholic University of Korea; 43-1 Yeokgok 2-dong, Wonmi, Bucheon Gyeonggi-do 14662 South Korea
| | - Yu Seok Youn
- School of Pharmacy; Sungkyunkwan University; 300 Cheoncheon-dong, Jangan-gu, Suwon 16419 South Korea
| | - Kyung Taek Oh
- College of Pharmacy; Chung-Ang University; 84 Heukseok-Ro, Dongjak, Seoul 06974 South Korea
| |
Collapse
|
13
|
Tsai YL, Tseng YC, Chen YM, Wen TC, Jan JS. Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: synthesis, self-assembly, and their interactions with proteins. Polym Chem 2018. [DOI: 10.1039/c7py01167a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine were synthesized and their self-assembly and protein interactions were evaluated.
Collapse
Affiliation(s)
- Yu-Lin Tsai
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Yu-Chao Tseng
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Yan-Miao Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung City 80708
- Taiwan
| | - Tain-Ching Wen
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City 70101
- Taiwan
| |
Collapse
|
14
|
Lee PY, Tuan-Mu HY, Hsiao LW, Hu JJ, Jan JS. Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1207-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
|
16
|
Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 2017; 261:352-366. [PMID: 28163211 DOI: 10.1016/j.jconrel.2017.01.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
In the past few years, substantial efforts have been made in the design and preparation of polymeric micelles as novel drug delivery vehicles. Typically, polymeric micelles possess a spherical core-shell structure, with a hydrophobic core and a hydrophilic shell. Consequently, poorly water-soluble drugs can be effectively solubilized within the hydrophobic core, which can significantly boost their drug loading in aqueous media. This leads to new opportunities for some bioactive compounds that have previously been abandoned due to their low aqueous solubility. Even so, the payload of small molecular drugs is still not often satisfactory due to low drug loading and premature release, which makes it difficult to meet the requirements of in vivo studies. This problem has been a major focus in recent years. Following an analysis of the published literature in this field, several strategies towards achieving polymeric micelles with high drug loading and stability are presented in this review, in order to ensure adequate drug levels reach target sites.
Collapse
|
17
|
Chen J, Yan B, Wang X, Huang Q, Thundat T, Zeng H. Core cross-linked double hydrophilic block copolymer micelles based on multiple hydrogen-bonding interactions. Polym Chem 2017. [DOI: 10.1039/c7py00210f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Facile preparation and characterization of core cross-linked micelles via strong multiple hydrogen bonds using well-defined thermo-responsive double hydrophilic block copolymers.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
- College of Light Industry
| | - Xiaogang Wang
- Material Science & Engineering Science College
- Taiyuan University of Science and Technology
- Taiyuan 030024
- China
| | - Qingxue Huang
- Material Science & Engineering Science College
- Taiyuan University of Science and Technology
- Taiyuan 030024
- China
| | - Thomas Thundat
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
18
|
Lin TX, Hsu FM, Lee YL, Goseki R, Ishizone T, Jan JS. Biomimetic Synthesis of Antireflective Silica/Polymer Composite Coatings Comprising Vesicular Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26309-26318. [PMID: 27602505 DOI: 10.1021/acsami.6b07874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antireflective (AR) silica/polymer composite coatings on glass and poly(methyl methacrylate) (PMMA) substrates were prepared by silica mineralization of layer-by-layer (LbL) assembled films composed of polystyrene-block-poly(l-lysine)/poly(l-glutamic acid) (PS-b-PLL/PGA) complex vesicles without any post-treatments. PS-b-PLL AB and A2B block copolymers with appropriate block ratio can self-assemble to form vesicles, which can be deposited onto substrates without dissociation. Silica deposition specifically onto the complex vesicles in the multilayer films through amine-catalyzed polycondensation results in the continuous, intact composite coatings comprising vesicular nanostructures, which provided an additional parameter for tuning their optical properties. The film thickness and porosity are mainly dictated by the bilayer number and the degree of deformation/fission of vesicles upon complexation and mineralization, depending on polymer composition. The coated PMMA substrate with maximum transmission over 98% can be achieved at the optimized wavelength region. The AR composite films were mechanically stable to withstand both the wipe and adhesion tests due to the preparation of continuous, intact films. This study demonstrated that the concept of preparing composite films comprising vesicular nanostructures through the combination of LbL assembly and biomineralization is feasible.
Collapse
Affiliation(s)
- Ting-Xuan Lin
- Department of Chemical Engineering, National Cheng Kung University No 1 , University Rd., Tainan 70101, Taiwan
| | - Feng-Ming Hsu
- Department of Chemical Engineering, National Cheng Kung University No 1 , University Rd., Tainan 70101, Taiwan
| | - Yun-Lun Lee
- Department of Chemical Engineering, National Cheng Kung University No 1 , University Rd., Tainan 70101, Taiwan
| | - Raita Goseki
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology 2-12-1-S1-13 Ohokayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University No 1 , University Rd., Tainan 70101, Taiwan
| |
Collapse
|
19
|
Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur Polym J 2016; 81:198-215. [PMID: 27524831 PMCID: PMC4973809 DOI: 10.1016/j.eurpolymj.2016.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022]
Abstract
Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.
Collapse
|
20
|
Zhang YX, Chen YF, Shen XY, Hu JJ, Jan JS. Reduction- and pH-Sensitive lipoic acid-modified Poly( l -lysine) and polypeptide/silica hybrid hydrogels/nanogels. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Glavas L, Odelius K, Albertsson A. Tuning loading and release by modification of micelle core crystallinity and preparation. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lidija Glavas
- Department of Fiber and Polymer Technology School of Chemical Science and Engineering KTH, Royal Institute of Technology Stockholm SE‐100 44 Sweden
| | - Karin Odelius
- Department of Fiber and Polymer Technology School of Chemical Science and Engineering KTH, Royal Institute of Technology Stockholm SE‐100 44 Sweden
| | - Ann‐Christine Albertsson
- Department of Fiber and Polymer Technology School of Chemical Science and Engineering KTH, Royal Institute of Technology Stockholm SE‐100 44 Sweden
| |
Collapse
|
22
|
Liu ST, Tuan-Mu HY, Hu JJ, Jan JS. Genipin cross-linked PEG-block-poly(l-lysine)/disulfide-based polymer complex micelles as fluorescent probes and pH-/redox-responsive drug vehicles. RSC Adv 2015. [DOI: 10.1039/c5ra18802d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and facile method to prepare multifunctional, cross-linked PIC micelles by properly design of constituent homopolymer/copolymer.
Collapse
Affiliation(s)
- Ssu-Ting Liu
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City
- Taiwan 701
| | - Ho-Yi Tuan-Mu
- Department of Biomedical Engineering
- National Cheng Kung University
- Taiwan
| | - Jin-Jia Hu
- Department of Biomedical Engineering
- National Cheng Kung University
- Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering
- National Cheng Kung University
- Tainan City
- Taiwan 701
| |
Collapse
|