1
|
Smith L, Karimi-Varzaneh HA, Finger S, Giunta G, Troisi A, Carbone P. Framework for a High-Throughput Screening Method to Assess Polymer/Plasticizer Miscibility: The Case of Hydrocarbons in Polyolefins. Macromolecules 2024; 57:4637-4647. [PMID: 38827962 PMCID: PMC11140736 DOI: 10.1021/acs.macromol.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Polymer composite materials require softening to reduce their glass transition temperature and improve processability. To this end, plasticizers (PLs), which are small organic molecules, are added to the polymer matrix. The miscibility of these PLs has a large impact on their effectiveness and, therefore, their interactions with the polymer matrix must be carefully considered. Many PL characteristics, including their size, topology, and flexibility, can impact their miscibility and, because of the exponentially large number of PLs, the current trial-and-error approach is very ineffective. In this work, we show that using coarse-grained molecular simulations of a small dataset of 48 PLs, it is possible to identify topological and thermodynamic descriptors that are proxy for their miscibility. Using ad-hoc molecular dynamics simulation setups that are relatively computationally inexpensive, we establish correlations between the PLs' topology, internal flexibility, thermodynamics of aggregation, and degree of miscibility, and use these descriptors to classify the molecules as miscible or immiscible. With all available data, we also construct a decision tree model, which achieves a F1 score of 0.86 ± 0.01 with repeated, stratified 5-fold cross-validation, indicating that this machine learning method can be a promising route to fully automate the screening. By evaluating the individual performance of the descriptors, we show this procedure enables a 10-fold reduction of the test space and provides the basis for the development of workflows that can efficiently screen PLs with a variety of topological features. The approach is used here to screen for apolar PLs in polyisoprene melts, but similar proxies would be valid for other polyolefins, while, in cases where polar interactions drive the miscibility, other descriptors are likely to be needed.
Collapse
Affiliation(s)
- Lois Smith
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | | | - Sebastian Finger
- Continental
Reifen Deutschland GmbH, Jädekamp 30, D-30419 Hanover, Germany
| | - Giuliana Giunta
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- BASF, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Alessandro Troisi
- Department
of Chemistry, University of Liverpool, Crown Street, L69 7ZD Liverpool, U.K.
| | - Paola Carbone
- Department
of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| |
Collapse
|
2
|
Yadav RS, Sharma S, Metzler R, Chakrabarti R. A passive star polymer in a dense active bath: insights from computer simulations. SOFT MATTER 2024; 20:3910-3922. [PMID: 38700098 DOI: 10.1039/d4sm00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Sanaa Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Germany.
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
3
|
Perelman RT, Schmidt A, Khan U, Walter NG. Spontaneous Confinement of mRNA Molecules at Biomolecular Condensate Boundaries. Cells 2023; 12:2250. [PMID: 37759470 PMCID: PMC10526803 DOI: 10.3390/cells12182250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular biomolecular condensates, termed ribonucleoprotein (RNP) granules, are often enriched in messenger RNA (mRNA) molecules relative to the surrounding cytoplasm. Yet, the spatial localization and diffusion of mRNAs in close proximity to phase separated RNP granules are not well understood. In this study, we performed single-molecule fluorescence imaging experiments of mRNAs in live cells in the presence of two types of RNP granules, stress granules (SGs) and processing bodies (PBs), which are distinct in their molecular composition and function. We developed a photobleaching- and noise-corrected colocalization imaging algorithm that was employed to determine the accurate positions of individual mRNAs relative to the granule's boundaries. We found that mRNAs are often localized at granule boundaries, an observation consistent with recently published data. We suggest that mRNA molecules become spontaneously confined at the RNP granule boundary similar to the adsorption of polymer molecules at liquid-liquid interfaces, which is observed in various technological and biological processes. We also suggest that this confinement could be due to a combination of intermolecular interactions associated with, first, the screening of a portion of the RNP granule interface by the polymer and, second, electrostatic interactions due to a strong electric field induced by a Donnan potential generated across the thin interface.
Collapse
Affiliation(s)
- Rebecca T. Perelman
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
| | - Andreas Schmidt
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02115, USA;
| | - Nils G. Walter
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
- Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Shandiz SA, Leuty GM, Guo H, Mokarizadeh AH, Maia JM, Tsige M. Structure and Thermodynamics of Linear, Ring, and Catenane Polymers in Solutions and at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7154-7166. [PMID: 37155243 DOI: 10.1021/acs.langmuir.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent decades, advances in the syntheses of mechanically interlocked macromolecules, such as catenanes, have led to much greater interest in the applications of these complexes, from molecular motors and actuators to nanoscale computational memory and nanoswitches. Much remains to be understood, however, regarding how catenated ring compounds behave as a result of the effects of different solvents as well as the effects of solvent/solvent interfaces. In this work, we have investigated, using molecular dynamics simulations, the effects of solvation of poly(ethylene oxide) chains of different topologies─linear, ring, and [2]catenane─in two solvents both considered favorable toward PEO (water, toluene) and at the water/toluene interface. Compared to ring and [2]catenane molecules, the linear PEO chain showed the largest increase in size at the water/toluene interface compared to bulk water or bulk toluene. Perhaps surprisingly, observations indicate that the tendency of all three topologies to extend at the water/toluene interface may have more to do with screening the interaction between the two solvents than with optimizing specific solvent-polymer contacts.
Collapse
Affiliation(s)
- Saeed Akbari Shandiz
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Gary M Leuty
- LinQuest Corporation, Beavercreek, Ohio 45431, United States
| | - Hao Guo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joao M Maia
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Pannuzzo M, Felici A, Decuzzi P. A Coarse-Grained Molecular Dynamics Description of Docetaxel-Conjugate Release from PLGA Matrices. Biomacromolecules 2022; 23:4678-4686. [PMID: 36237166 DOI: 10.1021/acs.biomac.2c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the extensive use of poly-lactic-glycolic-acid (PLGA) in biomedical applications, computational research on the mesoscopic characterization of PLGA-based delivery systems is limited. In this study, a computational model for PLGA is proposed, developed, and validated for the reproducibility of transport properties that can influence drug release, the rate of which remains difficult to control. For computational efficiency, coarse-grained (CG) models of the molecular components under consideration were built using the MARTINI force field version 2.2. The translocation free energy barrier ΔGt* across the PLGA matrix in the aqueous phase of docetaxel and derivatives of varying sizes and solubilities was predicted via molecular dynamics (MD) simulations and compared with experimental release data. The thermodynamic quantity ΔGt* anticipates and can help explain the release kinetics of hydrophobic compounds from the PLGA matrix, albeit within the limit of a drug concentration below a critical aggregation concentration. The proposed computational framework would allow one to predict the pharmacological behavior of polymeric implants loaded with a variety of payloads under different conditions, limiting the experimental workload and associated costs.
Collapse
Affiliation(s)
- Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa16163, Italy
| | - Alessia Felici
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa16163, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa16163, Italy
| |
Collapse
|
6
|
Ku KH, McDonald BR, Vijayamohanan H, Zentner CA, Nagelberg S, Kolle M, Swager TM. Dynamic Coloration of Complex Emulsions by Localization of Gold Rings Near the Triphase Junction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007507. [PMID: 33605015 DOI: 10.1002/smll.202007507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Multiphase microscale emulsions are a material platform that can be tuned and dynamically configured by a variety of chemical and physical phenomena, rendering them inexpensive and broadly programmable optical transducers. Interface engineering underpins many of these sensing schemes but typically focuses on manipulating a single interface, while engineering of the multiphase junctions of complex emulsions remains underexplored. Herein, multiphilic triblock copolymer surfactants are synthesized and assembled at the triphase junction of a dynamically reconfigurable biphasic emulsion. Tailoring the linear structure and composition of the polymer surfactants provides affinity to each phase of the complex emulsion (hydrocarbon, fluorocarbon, and continuous water phase), yielding selective localization of polymers around the triphase junction. Conjugation of these polymers with gold nanoparticles, forming structured rings, affords a dynamic reflected isotropic structural color that tracks with emulsion morphology, demonstrating the uniquely enabling nature of a functionalized triphase interface. This color is the result of interference of light along the internal hydrocarbon/fluorocarbon interface, with the gold nanoparticles scattering and redirecting light into total internal reflection competent paths. Thus, the functionalization of the triphase junction renders complex emulsions colorimetric sensors, a powerful tool toward sensitive and simple sensing platforms.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Benjamin R McDonald
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Harikrishnan Vijayamohanan
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Cassandra A Zentner
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Sara Nagelberg
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Giunta G, Carbone P. Cross-over in the dynamics of polymer confined between two liquids of different viscosity. Interface Focus 2019; 9:20180074. [PMID: 31065342 PMCID: PMC6501349 DOI: 10.1098/rsfs.2018.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 11/12/2022] Open
Abstract
Using molecular dynamics simulations, we analysed the polymer dynamics of chains of different molecular weights entrapped at the interface between two immiscible liquids. We showed that on increasing the viscosity of one of the two liquids the dynamic behaviour of the chain changes from a Zimm-like dynamics typical of dilute polymer solutions to a Rouse-like dynamics where hydrodynamic interactions are screened. We observed that when the polymer is in contact with a high viscosity liquid, the number of solvent molecules close to the polymer beads is reduced and ascribed the screening effect to this reduced number of polymer-solvent contacts. For the longest chain simulated, we calculated the distribution of loop length and compared the results with the theoretical distribution developed for solid/liquid interfaces. We showed that the polymer tends to form loops (although flat against the interface) and that the theory works reasonably well also for liquid/liquid interfaces.
Collapse
Affiliation(s)
- Giuliana Giunta
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Korolkovas A. 5D Entanglement in Star Polymer Dynamics. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Airidas Korolkovas
- Department of Physics and Astronomy; Uppsala University; Lägerhyddsvägen 1 752 37 Uppsala Sweden
- Large Scale Structures Group; Institut Laue-Langevin; 71 rue des Martyrs 38000 Grenoble France
| |
Collapse
|
9
|
Zaki AM, Carbone P. How the Incorporation of Pluronic Block Copolymers Modulates the Response of Lipid Membranes to Mechanical Stress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13284-13294. [PMID: 29084428 DOI: 10.1021/acs.langmuir.7b02244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We employ atomistic molecular dynamics simulations to investigate the effect that the incorporation of the nonionic amphiphilic copolymer known as Pluronic L64 has on the mechanical stability of a DPPC membrane. The simulations reveal that the incorporation of the polymer chains leads to membranes that can sustain increasing mechanical stresses. Analysis of mechanical, structural, and dynamic properties of the membrane shows that the polymer chains interact strongly with the lipids in the vicinity, restraining their mobility and imparting better mechanical stability to the membrane. The hybrid membranes under tension remain thicker, more ordered, and stiffer in comparison to their lipid analogues. Trans-bilayer lipid movements (flip-flop) are observed and appear to be triggered by the presence of the polymer chains. A careful analysis of the pore formation under high tensions reveals two distinctive mechanisms that depend on the distribution of the hydrophilic polymer blocks in the bilayer. Finally, the rate of growth of the formed membrane defects is slowed down in the presence of polymers. These findings show that Pluronic block copolymers could be exploited for the formation of optimized hybrid nanodevices with controlled elastic and dynamic properties.
Collapse
Affiliation(s)
- Afroditi Maria Zaki
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
|
11
|
Taddese T, Carbone P. Effect of Chain Length on the Partition Properties of Poly(ethylene oxide): Comparison between MARTINI Coarse-Grained and Atomistic Models. J Phys Chem B 2017; 121:1601-1609. [PMID: 28151665 DOI: 10.1021/acs.jpcb.6b10858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MARTINI coarse-grained beads are parameterized to match the partition coefficients of several organic molecules in different solvents. Here, we test the method when modeling the partitioning properties of poly(ethylene oxide) between solvents of different polarities. We show that, among the existing models, the latest model developed by Lee and co-workers [ Lee , H. ; Pastor , R. W. J. Phys. Chem. B 2011 , 115 , 7830 - 7837 ] is the one that most successfully reproduces the hydration free energy of short oligomers, although it predicts highly negative solvation free energies in octanol and hexane. We develop a new CG model matching the solvation free energy of the monomer in different solvents and propose a simple method to select the Lennard-Jones parameters that reproduce the desired partition coefficients. The model correctly reproduces water/hexane partition properties for oligomers up to 10 monomers but still suffers from a transferability problem for larger molecular weight.
Collapse
Affiliation(s)
- Tseden Taddese
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
12
|
Ghobadi AF, Letteri R, Parelkar SS, Zhao Y, Chan-Seng D, Emrick T, Jayaraman A. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation. Biomacromolecules 2016; 17:546-57. [DOI: 10.1021/acs.biomac.5b01462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
| | - Rachel Letteri
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sangram S. Parelkar
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Yue Zhao
- Quantum
Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Delphine Chan-Seng
- Institut Charles
Sadron UPR22-CNRS, 23 rue du Loess, 67034 Strasbourg, France
| | - Todd Emrick
- Department
of Polymer Science and Engineering, University of Massachusetts, 120
Governors Drive, Amherst, Massachusetts 01003, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716 United States
- Department
of Materials Science and Engineering, University of Delaware, 201 DuPont
Hall, Newark, Delaware 19716 United States
| |
Collapse
|
13
|
Taddese T, Cheung DL, Carbone P. Scaling Behavior of Polymers at Liquid/Liquid Interfaces. ACS Macro Lett 2015; 4:1089-1093. [PMID: 35614809 DOI: 10.1021/acsmacrolett.5b00462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of a polymer chain confined in a soft 2D slit formed by two immiscible liquids is studied by means of molecular dynamics simulations. We show that the scaling behavior of a polymer confined between two liquids does not follow that predicted for polymers adsorbed on solid or soft surfaces such as lipid bilayers. Indeed, our results show that in the diffusive regime the polymer behaves like in bulk solution, following the Zimm model, and with the hydrodynamic interactions dominating its dynamics. Although the presence of the interface does not affect the long-time diffusion properties, it has an influence on the dynamics at short time scale, where for low molecular weight polymers the subdiffusive regime almost disappears. Simulations carried out when the liquid interface is sandwiched between two solid walls show that, when the confinement is a few times larger than the blob size, the Rouse dynamics is recovered.
Collapse
Affiliation(s)
- Tseden Taddese
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David L. Cheung
- School
of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Paola Carbone
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
14
|
García Daza FA, Colville AJ, Mackie AD. Chain architecture and micellization: A mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants. J Chem Phys 2015; 142:114902. [DOI: 10.1063/1.4913960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Di Pasquale N, Marchisio DL, Barresi AA, Carbone P. Solvent Structuring and Its Effect on the Polymer Structure and Processability: The Case of Water–Acetone Poly-ε-caprolactone Mixtures. J Phys Chem B 2014; 118:13258-67. [DOI: 10.1021/jp505348t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicodemo Di Pasquale
- Istituto
di Ingegneria Chimica, Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Daniele Luca Marchisio
- Istituto
di Ingegneria Chimica, Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonello Alessandro Barresi
- Istituto
di Ingegneria Chimica, Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Paola Carbone
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|