1
|
Basu P, Banerjee A, Okoro PD, Masoumi A, Kanjilal B, Akbari M, Martins‐Green M, Armstrong DG, Noshadi I. Integration of Functional Polymers and Biosensors to Enhance Wound Healing. Adv Healthc Mater 2024; 13:e2401461. [PMID: 39235365 PMCID: PMC11582501 DOI: 10.1002/adhm.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Biosensors have led to breakthroughs in the treatment of chronic wounds. Since the discovery of the oxygen electrode by Clarke, biosensors have evolved into the design of smart bandages that dispense drugs to treat wounds in response to physiological factors, such as pH or glucose concentration, which indicate pathogenic tendencies. Aptamer-based biosensors have helped identify and characterize pathogenic bacteria in wounds that often form antibiotic-resistant biofilms. Several functional polymers have served as indispensable parts of the fabrication of these biosensors. Beginning with natural polymers such as alginate, chitosan, and silk-based fibroin, which are biodegradable and absorptive, advances have been made in formulating biocompatible synthetic polymers such as polyurethane and polyethylene glycol designed to reduce non-specific binding of proteins and cells, making biosensors less painful or cumbersome for patient use. Recently, polycaprolactone has been developed, which offers ductility and a large surface-area-to-volume ratio. There is still room for advances in the fabrication and use of biosensors for wound healing and in this review, the trend in developing biosensors from biomarker detection to smart dressings to the incorporation of machine learning in designing customized wound patches while making application easier is highlighted and can be used for a long time.
Collapse
Affiliation(s)
- Proma Basu
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Aihik Banerjee
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Prince David Okoro
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | | | - Baishali Kanjilal
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Mohsen Akbari
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Manuela Martins‐Green
- Department of Molecular Cellular and Systems BiologyUniversity of California, RiversideRiversideCA92521USA
| | - David G. Armstrong
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Iman Noshadi
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| |
Collapse
|
2
|
Aktas Eken G, Huang Y, Prucker O, Rühe J, Ober C. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309040. [PMID: 38334235 DOI: 10.1002/smll.202309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.
Collapse
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yuming Huang
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Oswald Prucker
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @FIT, Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Goerges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Christopher Ober
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
4
|
Salama R, Arshavsky-Graham S, Sella-Tavor O, Massad-Ivanir N, Segal E. Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids. Talanta 2021; 239:123124. [PMID: 34896821 DOI: 10.1016/j.talanta.2021.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
We present a porous Si (PSi)-based label-free optical biosensor for sensitive and continuous detection of a model target protein biomarker in gastrointestinal (GI) tract fluids. The biosensing platform is designed to continuously monitor its target protein within the complex GI fluids without sample preparation and washing steps. An oxidized PSi Fabry-Pérot thin films are functionalized with aptamers, which are used as the capture probes. The optical response of the aptamer-conjugated PSi is studied upon exposure to unprocessed GI fluids, originated from domestic pigs, spiked with the target protein. We investigate biological and chemical surface passivation methods to stabilize the surface and reduce non-specific adsorption of interfering proteins and molecules within the GI fluids. For the passivated PSi aptasensor we simulate continuous in vivo biosensing conditions, demonstrating that the aptasensor could successfully detect the target in a continuous manner without any need for surface washing after the target protein binding events, at a clinically relevant range. Furthermore, we simulate biosensing conditions within a smart capsule, in which the aptasensor is occasionally exposed to GI fluids in flow or via repeated cycles of injection and static incubation events. Such biosensor can be implemented within ingestible capsule devices and used for in situ biomarker detection in the GI tract.
Collapse
Affiliation(s)
- Rachel Salama
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sofia Arshavsky-Graham
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Naama Massad-Ivanir
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
5
|
Antunez EE, Mahon CS, Tong Z, Voelcker NH, Müllner M. A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules 2020; 22:441-453. [PMID: 33320642 DOI: 10.1021/acs.biomac.0c01318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waterborne diarrheal diseases such as travelers' diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers' diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 μM. Furthermore, our platform shows a temperature-mediated "catch-and-release" behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use.
Collapse
Affiliation(s)
- E Eduardo Antunez
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Clare S Mahon
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney 2006, New South Wales, Australia
| |
Collapse
|
6
|
Gaballa H, Theato P. Glucose-Responsive Polymeric Micelles via Boronic Acid–Diol Complexation for Insulin Delivery at Neutral pH. Biomacromolecules 2019; 20:871-881. [DOI: 10.1021/acs.biomac.8b01508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Strasse. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
8
|
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Anal Chem 2018; 91:441-467. [DOI: 10.1021/acs.analchem.8b05028] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstrasse 5, 30167 Hanover, Germany
| | - Naama Massad-Ivanir
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sharon Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Salonen J, Mäkilä E. Thermally Carbonized Porous Silicon and Its Recent Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703819. [PMID: 29484727 DOI: 10.1002/adma.201703819] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Indexed: 06/08/2023]
Abstract
Recent progress in research on thermally carbonized porous silicon (TCPSi) and its applications is reported. Despite a slow start, thermal carbonization has now started to gain interest mainly due to new emerging areas for applications. These new areas, such as optical sensing, drug delivery, and energy storage, require stable surface chemistry and physical properties. TCPSi is known to have all of these desired properties. Herein, the above-listed properties of TCPSi are summarized, and the carbonization processes, functionalization, and characterization of TCPSi are reviewed. Moreover, some of the emerging fields of TCPSi applications are discussed and recent advances in the fields are introduced.
Collapse
Affiliation(s)
- Jarno Salonen
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
10
|
Arshavsky-Graham S, Massad-Ivanir N, Paratore F, Scheper T, Bercovici M, Segal E. On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors. ACS Sens 2017; 2:1767-1773. [PMID: 29164872 DOI: 10.1021/acssensors.7b00692] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Institute
of Technical Chemistry, Leibniz Universität Hannover, Callinstr.
5, 30167 Hanover, Germany
| | | | - Federico Paratore
- IBM Research − Zürich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Thomas Scheper
- Institute
of Technical Chemistry, Leibniz Universität Hannover, Callinstr.
5, 30167 Hanover, Germany
| | | | | |
Collapse
|
11
|
Kumeria T, McInnes SJP, Maher S, Santos A. Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin Drug Deliv 2017; 14:1407-1422. [DOI: 10.1080/17425247.2017.1317245] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tushar Kumeria
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
| | - Steven J. P. McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, Australia
| | - Shaheer Maher
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abel Santos
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Chhasatia R, Sweetman MJ, Harding FJ, Waibel M, Kay T, Thomas H, Loudovaris T, Voelcker NH. Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor. Biosens Bioelectron 2017; 91:515-522. [PMID: 28082240 DOI: 10.1016/j.bios.2017.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
A label-free porous silicon (pSi) based, optical biosensor, using both an antibody and aptamer bioreceptor motif has been developed for the detection of insulin. Two parallel biosensors were designed and optimised independently, based on each bioreceptor. Both bioreceptors were covalently attached to a thermally hydrosilylated pSi surface though amide coupling, with unreacted surface area rendered stable and low fouling by incorporation of PEG moieties. The insulin detection ability of each biosensor was determined using interferometric reflectance spectroscopy, using a range of different media both with and without serum. Sensing performance was compared in terms of response value, response time and limit of detection (LOD) for each platform. In order to demonstrate the capability of the best performing biosensor to detect insulin from real samples, an in vitro investigation with the aptamer-modified surface was performed. This biosensor was exposed to buffer conditioned by glucose-stimulated human islets, with the result showing a positive response and a high degree of selectivity towards insulin capture. The obtained results correlated well with the ELISA used in the clinic for assaying glucose-stimulated insulin release from donor islets. We anticipate that this type of sensor can be applied as a rapid point-of-use biosensor to assess the quality of donor islets in terms of their insulin production efficiency, prior to transplantation.
Collapse
Affiliation(s)
- Rinku Chhasatia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Martin J Sweetman
- Experimental Therapeutics Laboratory, Hanson Institute and Samson Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Michaela Waibel
- St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Tom Kay
- St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Helen Thomas
- St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research, Victoria 3065, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| |
Collapse
|
13
|
Jankowska D, Bannwarth M, Schulenburg C, Faccio G, Maniura-Weber K, Rossi R, Scherer L, Richter M, Boesel L. Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens Bioelectron 2017; 87:312-319. [DOI: 10.1016/j.bios.2016.08.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
14
|
Mariani S, Strambini LM, Barillaro G. Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing. Anal Chem 2016; 88:8502-9. [PMID: 27479768 DOI: 10.1021/acs.analchem.6b01228] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R(2) = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | | | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
15
|
Müller S, Cavallaro A, Vasilev K, Voelcker NH, Schönherr H. Temperature-Controlled Antimicrobial Release from Poly(diethylene glycol methylether methacrylate)-Functionalized Bottleneck-Structured Porous Silicon for the Inhibition of Bacterial Growth. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie Müller
- Physical Chemistry I; Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Alex Cavallaro
- School of Engineering; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Krasimir Vasilev
- School of Engineering; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Nicolas H. Voelcker
- Future Industries Institute; University of South Australia; Mawson Lakes Boulevard 5095 Adelaide Australia
| | - Holger Schönherr
- Physical Chemistry I; Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
16
|
Vancoillie G, Hoogenboom R. Synthesis and polymerization of boronic acid containing monomers. Polym Chem 2016. [DOI: 10.1039/c6py00775a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This mini-review summarizes the most commonly used methods for the synthesis of phenylboronic acid-(co)polymers ranging from simple straightforward polymerization to complex post-polymerization modification.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
17
|
Brooks WLA, Sumerlin BS. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 2015; 116:1375-97. [DOI: 10.1021/acs.chemrev.5b00300] [Citation(s) in RCA: 552] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
18
|
Krismastuti FSH, Bayat H, Voelcker NH, Schönherr H. Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide. Anal Chem 2015; 87:3856-63. [PMID: 25739712 DOI: 10.1021/ac504626m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Porous anodized aluminum oxide (pAAO) is a nanostructured material, which due to its optical properties lends itself to the design of optical biosensors where interactions in the pores of this material are transduced into interferometric reflectance shifts. In this study, a pAAO-based biosensor was developed as a biosensing platform to detect proteinase K, an enzyme which is a readily available model system for the proteinase produced by Pseudomonas aeruginosa. The pAAO pore walls are decorated by means of the layer-by-layer (LbL) deposition technique using poly(sodium-4-styrenesulfonate) and poly-l-lysine as negatively and positively charged polyelectrolytes, respectively. Interferometric reflectance spectroscopy utilized to observe the optical properties of pAAO during LbL deposition shows that the deposition of the polyelectrolyte onto the pore walls increases the net refractive index, thus red-shifting the effective optical thickness (EOT). Upon incubation with proteinase K, a conspicuous blue shift of the EOT is observed, which is attributed to the destabilization of the LbL film upon enzymatic degradation of the poly-l-lysine components. This result is confirmed by scanning electron microscopy results. Finally, as a proof-of-principle, we demonstrate the ability of the label-free pAAO-based biosensing platform to detect the presence of the proteinase K in human wound fluid, highlighting the potential for detection of bacterial infections in chronic wounds.
Collapse
Affiliation(s)
- Fransiska Sri Herwahyu Krismastuti
- †ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.,‡Wound Management Innovation Cooperative Research Centre, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Haider Bayat
- §Physical Chemistry I, Department of Chemistry and Biology, University of SiegenAdolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Nicolas H Voelcker
- †ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia.,‡Wound Management Innovation Cooperative Research Centre, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Holger Schönherr
- §Physical Chemistry I, Department of Chemistry and Biology, University of SiegenAdolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
19
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Malytskyi V, Simon JJ, Patrone L, Raimundo JM. Synthesis, self-assembly and characterization of a novel push–pull thiophene-based chromophore on a gold surface. RSC Adv 2015. [DOI: 10.1039/c5ra02200b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A self-assembled dense monolayer based on a non-charged push–pull chromophore is clearly evidenced by electrochemical, XPS and STM analysis. Associated with good film properties a conducting behavior consistent with the structure of the SAM-organized push–pull is also shown.
Collapse
Affiliation(s)
- Volodymyr Malytskyi
- Centre Interdisciplinaire de Nanoscience de Marseille
- Aix-Marseille Université
- CNRS
- CINaM UMR 7325
- 13288 Marseille Cedex 09
| | - Jean-Jacques Simon
- Institut Matériaux Microélectronique Nanosciences de Provence
- Aix-Marseille Université
- CNRS
- Université de Toulon
- IM2NP UMR 7334
| | - Lionel Patrone
- Institut Matériaux Microélectronique Nanosciences de Provence
- Aix-Marseille Université
- CNRS
- Université de Toulon
- IM2NP UMR 7334
| | - Jean-Manuel Raimundo
- Centre Interdisciplinaire de Nanoscience de Marseille
- Aix-Marseille Université
- CNRS
- CINaM UMR 7325
- 13288 Marseille Cedex 09
| |
Collapse
|
21
|
Mukherjee S, Bapat AP, Hill MR, Sumerlin BS. Oximes as reversible links in polymer chemistry: dynamic macromolecular stars. Polym Chem 2014. [DOI: 10.1039/c4py01282h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate the formation of oxime-functional macromolecular stars that are able to dissociate and reconstruct themselves upon application of a stimulus.
Collapse
Affiliation(s)
- Soma Mukherjee
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville, USA
| | - Abhijeet P. Bapat
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville, USA
| | - Megan R. Hill
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville, USA
| |
Collapse
|