1
|
Lei C, Wang KY, Ma YX, Hao DX, Zhu YN, Wan QQ, Zhang JS, Tay FR, Mu Z, Niu LN. Biomimetic Self-Maturation Mineralization System for Enamel Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311659. [PMID: 38175183 DOI: 10.1002/adma.202311659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xiao Hao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang-Shan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Wegner CE, Stahl R, Velsko I, Hübner A, Fagernäs Z, Warinner C, Lehmann R, Ritschel T, Totsche KU, Küsel K. A glimpse of the paleome in endolithic microbial communities. MICROBIOME 2023; 11:210. [PMID: 37749660 PMCID: PMC10518947 DOI: 10.1186/s40168-023-01647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/09/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The terrestrial subsurface is home to a significant proportion of the Earth's microbial biomass. Our understanding about terrestrial subsurface microbiomes is almost exclusively derived from groundwater and porous sediments mainly by using 16S rRNA gene surveys. To obtain more insights about biomass of consolidated rocks and the metabolic status of endolithic microbiomes, we investigated interbedded limestone and mudstone from the vadose zone, fractured aquifers, and deep aquitards. RESULTS By adapting methods from microbial archaeology and paleogenomics, we could recover sufficient DNA for downstream metagenomic analysis from seven rock specimens independent of porosity, lithology, and depth. Based on the extracted DNA, we estimated between 2.81 and 4.25 × 105 cells × g-1 rock. Analyzing DNA damage patterns revealed paleome signatures (genetic records of past microbial communities) for three rock specimens, all obtained from the vadose zone. DNA obtained from deep aquitards isolated from surface input was not affected by DNA decay indicating that water saturation and not flow is controlling subsurface microbial survival. Decoding the taxonomy and functional potential of paleome communities revealed increased abundances for sequences affiliated with chemolithoautotrophs and taxa such as Cand. Rokubacteria. We also found a broader metabolic potential in terms of aromatic hydrocarbon breakdown, suggesting a preferred utilization of sedimentary organic matter in the past. CONCLUSIONS Our study suggests that limestones function as archives for genetic records of past microbial communities including those sensitive to environmental stress at modern times, due to their specific conditions facilitating long-term DNA preservation. Video Abstract.
Collapse
Affiliation(s)
- Carl-Eric Wegner
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Irina Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Alex Hübner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Anthropology, Harvard University, Cambridge, MA, USA
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Thomas Ritschel
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Rahmat RA, Humphries MA, Saedon NA, Self PG, Linacre AMT. Diagnostic models to predict nuclear DNA and mitochondrial DNA recovery from incinerated teeth. Int J Legal Med 2023; 137:1353-1360. [PMID: 37306739 DOI: 10.1007/s00414-023-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5-99.7%).
Collapse
Affiliation(s)
- Rabiah A Rahmat
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Melissa A Humphries
- School and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, 5006, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, the University of Adelaide, Adelaide, South Australia, Australia
| | - Nor A Saedon
- Forensic DNA Division, Forensic Science Analysis Centre, Department of Chemistry, Selangor, 46661, Malaysia
| | - Peter G Self
- CSIRO, Land and Water, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Adrian M T Linacre
- College of Science and Engineering, Flinders University, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
4
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
5
|
Verdier H, Konecny-Dupre L, Marquette C, Reveron H, Tadier S, Grémillard L, Barthès A, Datry T, Bouchez A, Lefébure T. Passive sampling of environmental DNA in aquatic environments using 3D-printed hydroxyapatite samplers. Mol Ecol Resour 2022; 22:2158-2170. [PMID: 35218316 DOI: 10.1111/1755-0998.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
The study of environmental DNA released by aquatic organisms in their habitat offers a fast, non-invasive and sensitive approach to monitor their presence. Common eDNA sampling methods such as water filtration and DNA precipitation are time consuming, require difficult-to-handle equipment and partially integrate eDNA signals. To overcome these limitations, we created the first proof of concept of a passive, 3D-printed and easy-to-use eDNA sampler. We designed the samplers from hydroxyapatite (HAp samplers), a natural mineral with a high DNA adsorption capacity. The porous structure and shape of the samplers were designed to optimise DNA adsorption and facilitate their handling in the laboratory and in the field. Here we show that HAp samplers can efficiently collect genomic DNA in controlled set-ups, but can also collect animal eDNA under controlled and natural conditions with yields similar to conventional methods. However, we also observed large variations in the amount of DNA collected even under controlled conditions. A better understanding of the DNA-hydroxyapatite interactions on the surface of the samplers is now necessary to optimise the eDNA adsorption and to allow the development of a reliable, easy-to-use and reusable eDNA sampling tool.
Collapse
Affiliation(s)
- Héloïse Verdier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France.,Eurofins Hydrobiologie France, Rue Lucien Cuenot, 54521, Maxéville, France.,INRAE, UR-Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626, VILLEURBANNE Cedex, France
| | - Lara Konecny-Dupre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622, Villeurbanne cedex, France
| | - Helen Reveron
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Solène Tadier
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Laurent Grémillard
- Univ Lyon, INSA Lyon, UCBL, CNRS, MATEIS UMR 5510, 69621, Villeurbanne, France
| | - Amélie Barthès
- Eurofins Hydrobiologie France, Rue Lucien Cuenot, 54521, Maxéville, France
| | - Thibault Datry
- INRAE, UR-Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626, VILLEURBANNE Cedex, France
| | - Agnès Bouchez
- INRAE, USMB, UMR CARRTEL, 75bis av. de Corzent, 742000, Thonon les Bains, France
| | - Tristan Lefébure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
6
|
Izuegbunam CL, Wijewantha N, Wone B, Ariyarathne MA, Sereda G, Wone BWM. A nano-biomimetic transformation system enables in planta expression of a reporter gene in mature plants and seeds. NANOSCALE ADVANCES 2021; 3:3240-3250. [PMID: 36133668 PMCID: PMC9417712 DOI: 10.1039/d1na00107h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 05/08/2023]
Abstract
Plant genetic engineering will be essential to decipher the genomic basis of complex traits, optimize crop genomics, and enable plant-based production of recombinant proteins. However, established plant transformation approaches for bioengineering are fraught with limitations. Although nanoparticle-mediated methods show great promise for advancing plant biotechnology, many engineered nanomaterials can have cytotoxic and ecological effects. Here, we demonstrate the efficient uptake of a nano-biomimetic carrier of plasmid DNA and transient expression of a reporter gene in leaves of Arabidopsis, common ice plant and tobacco, as well as in the developing seed tissues of Arabidopsis, field mustard, barley, and wheat. The nano-biomimetic transformation system described here has all the advantages of other nanoparticle-mediated approaches for passive delivery of genetic cargo into a variety of plant species and is also nontoxic to cells and to the environment for diverse biotechnological applications in plant biology and crop science.
Collapse
Affiliation(s)
| | | | - Beate Wone
- Department of Biology, University of South Dakota SD USA
| | | | | | | |
Collapse
|
7
|
Unravelling the Encapsulation of DNA and Other Biomolecules in HAp Microcalcifications of Human Breast Cancer Tissues by Raman Imaging. Cancers (Basel) 2021; 13:cancers13112658. [PMID: 34071374 PMCID: PMC8198780 DOI: 10.3390/cancers13112658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Although microcalcifications can be considered one of the first indicators of suspicious cancer lesions, depending on their morphology and distribution, the formation of hydroxyapatite calcifications and their relationship with malignancy remains unknown. In this work, we investigate in depth the biochemical composition of breast cancer microcalcifications, combining Raman spectroscopy imaging and advanced multivariate analysis. We demonstrate that DNA is naturally adsorbed and encapsulated inside hydroxyapatite found in breast cancer tissue. Furthermore, we also show the encapsulation of other relevant biomolecules such as lipids, proteins, cytochrome C and polysaccharides. The demonstration of the natural DNA biomineralization in cancer tissues represents an unprecedented advance in the field, as it can pave the way to understanding the role of hydroxyapatite in malignant tissues. Abstract Microcalcifications are detected through mammography screening and, depending on their morphology and distribution (BI-RADS classification), they can be considered one of the first indicators of suspicious cancer lesions. However, the formation of hydroxyapatite (HAp) calcifications and their relationship with malignancy remains unknown. In this work, we report the most detailed three-dimensional biochemical analysis of breast cancer microcalcifications to date, combining 3D Raman spectroscopy imaging and advanced multivariate analysis in order to investigate in depth the molecular composition of HAp calcifications found in 26 breast cancer tissue biopsies. We demonstrate that DNA has been naturally adsorbed and encapsulated inside HAp microcalcifications. Furthermore, we also show the encapsulation of other relevant biomolecules in HAp calcifications, such as lipids, proteins, cytochrome C and polysaccharides. The demonstration of natural DNA biomineralization, particularly in the tumor microenvironment, represents an unprecedented advance in the field, as it can pave the way to understanding the role of HAp in malignant tissues.
Collapse
|
8
|
Mckinnon M, Henneberg M, Simpson E, Higgins D. A comparison of crystal structure in fresh, burned and archaic bone - Implications for forensic sampling. Forensic Sci Int 2020; 313:110328. [PMID: 32502739 DOI: 10.1016/j.forsciint.2020.110328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Standard protocols for extracting DNA from bone are variable and are largely dependent on the state of preservation. In archaic samples, endogenous DNA is believed to be tightly bound to crystal aggregates in the Hydroxyapatite (HAp) matrix requiring prolonged demineralisation to allow its release. By comparison, fresh bone contains abundant cellular material, discounting the need for demineralisation. Recommendations for incinerated bone, specifically how viable sampling sites should be selected and the ideal techniques for DNA recovery are unclear, and the protocol used is often selected based on macroscopic sample appearance. It has been postulated that like archaic bone, burned bone is 'highly degraded' and therefore aDNA techniques may present better results for DNA recovery than using fresh protocols. However, little research has been undertaken comparing the crystal structure of burnt, fresh and archaic bone. This study uses a combination of XRPD and SEM analysis to compare the crystalline profile and microscopic appearance of burned bone subjected to temperatures ranging from 100-1000°C, with archaic and fresh samples. Although macroscopically visually different, fresh samples and samples heated up to 500°C showed no microscopic differences or significant changes in crystallinity. By comparison, samples heated above 500°C became significantly more crystalline, with HAp crystal size increasing dramatically. Archaic samples were different again, more closely resembling the amorphous fresh samples than the highly crystalline incinerated samples. These results suggests that, potentially, samples burned at 500°C or lower can be treated as fresh samples, whilst samples exposed to higher temperatures may require adapted protocols. Whether or not these highly burned samples require demineralisation needs to be investigated.
Collapse
Affiliation(s)
- Meghan Mckinnon
- Discipline of Anatomy and Pathology, Adelaide Medical School, the University of Adelaide, Adelaide, Australia.
| | - Maciej Henneberg
- Discipline of Anatomy and Pathology, Adelaide Medical School, the University of Adelaide, Frome Road, Adelaide, SA 5000, Australia
| | | | - Denice Higgins
- Forensic Odontology Unit, Adelaide Dental School, the University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Catalano F, Ivanchenko P, Rebba E, Sakhno Y, Alberto G, Dovbeshko G, Martra G. Towards the control of the biological identity of nanobiomaterials: Impact of the structure of 011¯0 surface terminations of nanohydroxyapatite on the conformation of adsorbed proteins. Colloids Surf B Biointerfaces 2020; 188:110780. [PMID: 32004906 DOI: 10.1016/j.colsurfb.2020.110780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 11/24/2022]
Abstract
High-resolution transmission electron microscopy, ζ-potential and in-situ IR spectroscopy of adsorbed CO were combined for elucidating the ratio between {011¯0}_ Ca-rich: {011¯0}_ P-rich terminations of {011¯0} facets, i.e. the surfaces with the highest morphological importance, in two nanohydroxyapatite samples. Bovine serum albumin was found to form at least a monolayer on the surface left accessible to protein molecules by the agglomeration of nanoparticles when suspended in the buffered incubation medium. Noticeably, the conformation of adsorbed proteins appeared sensitive to the ratio between the two types of {011¯0} terminations, also resulting in a difference in the surface exposed toward the exterior by the adsorbed protein layer(s).
Collapse
Affiliation(s)
- Federico Catalano
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy
| | - Pavlo Ivanchenko
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy.
| | - Erica Rebba
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy
| | - Yuriy Sakhno
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy
| | - Gabriele Alberto
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy
| | - Galyna Dovbeshko
- Institute of Physics of the National Academy of Science of Ukraine, 46 Nauky Ave, Kyiv 03028, Ukraine
| | - Gianmario Martra
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino, 10125, Italy
| |
Collapse
|
10
|
Selected DNA aptamers as hydroxyapatite affinity reagents. Anal Chim Acta 2020; 1110:115-121. [PMID: 32278386 DOI: 10.1016/j.aca.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
DNA aptamers were selected for their ability to bind specifically and quickly to crystalline hydroxyapatite (Ca10(PO4)6(OH)2; HAP), the primary mineral component of enamel and bone. Aptamers were found to have an enhanced percent of G-nucleotides and a propensity for forming a G-quadruplex secondary structure. One aptamer was studied in comparison to control sequences and was found to bind with high affinity and at high loading capacity, with enhanced binding kinetics, and with specificity for crystalline HAP material over amorphous calcium phosphate (ACP) and β-tricalcium phosphate (TCP). The fluorescently-functionalized aptamer was demonstrated to specifically label HAP in a surface binding experiment and suggests the usefulness of this selected aptamer in biomedical or biotechnology fields where the labeling of specific calcium phosphate materials is required.
Collapse
|
11
|
Kohll AX, Antkowiak PL, Chen WD, Nguyen BH, Stark WJ, Ceze L, Strauss K, Grass RN. Stabilizing synthetic DNA for long-term data storage with earth alkaline salts. Chem Commun (Camb) 2020; 56:3613-3616. [PMID: 32107514 DOI: 10.1039/d0cc00222d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rapid aging tests (70 °C, 50% RH) of solid state DNA dried in the presence of various salt formulations, showed the strong stabilizing effect of calcium phosphate, calcium chloride and magnesium chloride, even at high DNA loadings (>20 wt%). A DNA-based digital information storage system utilizing the stabilizing effect of MgCl2 was tested by storing a DNA file, encoding 115 kB of digital data, and the successful readout of the file by sequencing after accelerated aging.
Collapse
Affiliation(s)
- A Xavier Kohll
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Son J, Kim J, Lee K, Hwang J, Choi Y, Seo Y, Jeon H, Kang HC, Woo HM, Kang BJ, Choi J. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomater 2019; 99:469-478. [PMID: 31494292 DOI: 10.1016/j.actbio.2019.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
In this study, we developed aptamer-conjugated hydroxyapatite (Apt-HA) that promotes bone regeneration and angiogenesis. The 3R02 bivalent aptamer specific to vascular endothelial growth factor (VEGF) was grafted to the hydroxyapatite (HA) surface. Apt-HA was tested for its VEGF protein capture ability to determine the optimal aptamer concentration immobilized on the HA. Apt-HA showed higher VEGF protein capture ability, and faster growth of human umbilical vein endothelial cell (HUVEC) compared to a neat HA with no cytotoxic effects on human osteoblasts. To examine in vivo angiogenesis and bone regeneration, Apt-HA and HA were bilaterally implanted into rabbit tibial metaphyseal defects and analyzed after eight weeks using micro-CT, histology, and histomorphometry. Apt-HA showed significantly increased the volume of new bones, the percentage of bone, and the density of bone mineral in cortical bone. Apt-HA also exhibited the enhanced bone formation at the cortical region in a histomorphometric analysis. Finally, Apt-HA showed significantly increased blood vessel number compared to a neat HA. In summary, the engineered Apt-HA has potential as a bone graft material that may simultaneously promote bone regeneration and angiogenesis. STATEMENT OF SIGNIFICANCE: This work presents a functional hydroxyapatite bone graft using a DNA-based aptamer which overcomes the limitations of existing bone graft materials, which use bound signaling peptides. DNA aptamer immobilized hydroxyapatite enhances the in vitro proliferation of human umbilical vascular endothelial cells as well as in vivo angiogenesis and bone regeneration. DNA aptamer immobilized hydroxyapatite shows no cytotoxic effect on human osteoblasts.
Collapse
|
13
|
Revilla-López G, Rodríguez-Rivero AM, Del Valle LJ, Puiggalí J, Turon P, Alemán C. Biominerals Formed by DNA and Calcium Oxalate or Hydroxyapatite: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11912-11922. [PMID: 31373826 DOI: 10.1021/acs.langmuir.9b01566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biominerals formed by DNA and calcium oxalate (CaOx) or hydroxyapatite (HAp), the most important and stable phase of calcium phosphate) have been examined and compared using a synergistic combination of computer simulation and experimental studies. The interest of this comparison stems from the medical observation that HAp- and CaOx-based microcalcifications are frequently observed in breast cancer tissues, and some of their features are used as part of the diagnosis. Molecular dynamics simulations show that (1) the DNA double helix remains stable when it is adsorbed onto the most stable facet of HAp, whereas it undergoes significant structural distortions when it is adsorbed onto CaOx; (2) DNA acts as a template for the nucleation and growth of HAp but not for the mineralization of CaOx; and (3) the DNA double helix remains stable when it is encapsulated inside HAp nanopores, but it becomes destabilized when the encapsulation occurs into CaOx nanopores. Furthermore, CaOx and HAp minerals containing DNA molecules inside and/or adsorbed on the surface have been prepared in the lab by mixing solutions containing the corresponding ions with fish sperm DNA. Characterization of the formed minerals, which has been focused on the identification of DNA using UV-vis spectroscopy, indicates that the tendency to adsorb and, especially, encapsulate DNA is much smaller for CaOx than for HAp, which is in perfect agreement with results from molecular dynamics simulations. Finally, quantum mechanical calculations have been performed to rationalize these results in terms of molecular interactions, evidencing the high affinity of Ca2+ toward oxalate anions in an aqueous environment.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
| | - Anna M Rodríguez-Rivero
- Research and Development , B. Braun Surgical, S.A. , Ctra. de Terrassa 121 , Rubí, 08191 Barcelona , Spain
- Universitat Autònoma de Barcelona. Campus de la UAB , Plaça Cívica, Bellaterra, 08193 Barcelona , Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| | - Pau Turon
- Research and Development , B. Braun Surgical, S.A. , Ctra. de Terrassa 121 , Rubí, 08191 Barcelona , Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| |
Collapse
|
14
|
Shlaferman J, Paige A, Meserve K, Miech JA, Gerdon AE. Selected DNA Aptamers Influence Kinetics and Morphology in Calcium Phosphate Mineralization. ACS Biomater Sci Eng 2019; 5:3228-3236. [DOI: 10.1021/acsbiomaterials.9b00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob Shlaferman
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Alexander Paige
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Krista Meserve
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Jason A. Miech
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E. Gerdon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Comeau P, Willett T. Impact of Side Chain Polarity on Non-Stoichiometric Nano-Hydroxyapatite Surface Functionalization with Amino Acids. Sci Rep 2018; 8:12700. [PMID: 30140033 PMCID: PMC6107576 DOI: 10.1038/s41598-018-31058-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022] Open
Abstract
In this study the affinity of three amino acids for the surface of non-stoichiometric hydroxyapatite nanoparticles (ns-nHA) was investigated under different reaction conditions. The amino acids investigated were chosen based on their differences in side chain polarity and potential impact on this surface affinity. While calcium pre-saturation of the calcium-deficient ns-nHA was not found to improve attachment of any of the amino acids studied, the polarity and fraction of ionized functional side groups was found to have a significant impact on this attachment. Overall, amino acid attachment to ns-nHA was not solely reliant on carboxyl groups. In fact, it seems that amine groups also notably interacted with the negative ns-nHA surface and increased the degree of surface binding achieved. As a result, glycine and lysine had greater attachment to ns-nHA than aspartic acid under the reaction conditions studied. Lastly, our results suggest that a layer of each amino acid forms at the surface of ns-nHA, with aspartic acid attachment the most stable and its surface coverage the least of the three amino acids studied.
Collapse
Affiliation(s)
- Patricia Comeau
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Thomas Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
17
|
Rivas M, del Valle LJ, Rodríguez-Rivero AM, Turon P, Puiggalí J, Alemán C. Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release. ACS Biomater Sci Eng 2018; 4:3234-3245. [DOI: 10.1021/acsbiomaterials.8b00353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manuel Rivas
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Luís J. del Valle
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| | | | - Pau Turon
- B. Braun Surgical, S.A. Carretera de Terrasa 121, 08191 Rubí (Barcelona), Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| |
Collapse
|
18
|
Rivas M, del Valle LJ, Armelin E, Bertran O, Turon P, Puiggalí J, Alemán C. Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. Chemphyschem 2018; 19:1746-1755. [DOI: 10.1002/cphc.201800196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Manuel Rivas
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Luis J. del Valle
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Elaine Armelin
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Oscar Bertran
- Department of PhysicsUniversitat Politècnica de Catalunya EEI, Av. Pla de la Massa, 8 08700 Igualada Spain
| | - Pau Turon
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- B. Braun Surgical, S.A Carretera de Terrassa 121 08191 Rubí (Barcelona) Spain
| | - Jordi Puiggalí
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Carlos Alemán
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| |
Collapse
|
19
|
Torras J, Zanuy D, Bertran O, Alemán C, Puiggalí J, Turón P, Revilla-López G. Close contacts at the interface: Experimental-computational synergies for solving complexity problems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials’ properties. Yet, as our knowledge of these “backbones” enlarged so did the interest for the materials’ boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material’s surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.
Collapse
Affiliation(s)
- Juan Torras
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE) , Universitat Politècnica de Catalunya , C. Eduard Maristany 10-14, 08019 Barcelona , Spain
| | - David Zanuy
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE) , Universitat Politècnica de Catalunya , C. Eduard Maristany 10-14, 08019 Barcelona , Spain
| | - Oscar Bertran
- Departament de Física Aplicada , EEI, Universitat Politècnica de Catalunya , Av. Pla de la Massa, 8, 08700 Igualada , Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE) , Universitat Politècnica de Catalunya , C. Eduard Maristany 10-14, 08019 Barcelona , Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE) , Universitat Politècnica de Catalunya , C. Eduard Maristany 10-14, 08019 Barcelona , Spain
| | - Pau Turón
- B. Braun Surgical S.A , Carretera de Terrassa 121 , Rubí (Barcelona) , Spain
| | - Guillem Revilla-López
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE) , Universitat Politècnica de Catalunya , C. Eduard Maristany 10-14, 08019 Barcelona , Spain
- Institut für Organische Chemie , Universität Regensburg , Universitätsstr. 31, 93053 Regensburg , Germany
| |
Collapse
|
20
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
21
|
Wang X, Zhang L, Liu Z, Zeng Q, Jiang G, Yang M. Probing the surface structure of hydroxyapatite through its interaction with hydroxyl: a first-principles study. RSC Adv 2018; 8:3716-3722. [PMID: 35542921 PMCID: PMC9077697 DOI: 10.1039/c7ra13121f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 11/27/2022] Open
Abstract
Understanding the interaction of the hydroxyapatite (HAp) surface with hydroxyl originating from either the alkalescent physiological environment or HAp itself is crucial for the development of HAp-based biomaterials. Periodical density functional theory calculations were carried out in this study to explore the interaction of the HAp (100), (010) and (001) facets with hydroxyl. Based on a comparison study of Ca-rich, PO4-rich and Ca-PO4-OH mixed surfaces, the interaction pattern, interaction energy and effect of an additional water molecule on the Ca-OH interaction were comprehensively studied. The formation of CaOH on the Ca-rich surface was energetically favored on (100) and (001), while Ca(OH)2 was energetically favored on (010). The Ca-water interaction was competitive, but had lower interaction energy than Ca-OH. Furthermore, Ca-O bonding and its influence on the OH stretching vibration were analyzed. Our calculations suggest that the hydroxyl-coated surface structure is more appropriate than the commonly used Ca-terminated surface model for studying HAp surface activity in its service environments.
Collapse
Affiliation(s)
- Xian Wang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Li Zhang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Zeyu Liu
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Qun Zeng
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| |
Collapse
|
22
|
El-Fiqi A, Buitrago JO, Yang SH, Kim HW. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications. Acta Biomater 2017; 60:38-49. [PMID: 28754647 DOI: 10.1016/j.actbio.2017.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO2-15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m2/g and pore volume of 0.153cm3/g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic differentiation of cells when incorporated into cell-laden gels. The intriguing properties observed in this study, including biomimetic composition, high mesoporosity, release of therapeutic ions, effective loading and long-term release of proteins, and diverse yet favorable 3D cellular interactions, suggest great potential of the newly developed biomimetic microspheres in biomedical applications, such as drug delivery and cell/tissue engineering. STATEMENT OF SIGNIFICANCE This work reports the generation of apatite spheres with a few micrometers in size biomimetically grown from bioactive glass nanoparticles, through a series of intriguing yet unprecedented phenomenon involving aggregation of nanoparticles, mineralization and sphere growth. The mineral microspheres possess some unique physico-chemical properties including mesoporosity, ultrahigh surface area, and therapeutic ionic release. Furthermore, the spheres show excellent loading and delivery capacity of protein molecules, and mediate favorable cellular interactions in 2D and 3D culture conditions, demonstrating a future multifunctional microcarrier platform for the therapeutics delivery and cell/tissue engineering.
Collapse
|
23
|
Ridi F, Meazzini I, Castroflorio B, Bonini M, Berti D, Baglioni P. Functional calcium phosphate composites in nanomedicine. Adv Colloid Interface Sci 2017; 244:281-295. [PMID: 27112061 DOI: 10.1016/j.cis.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Calcium phosphate (CaP) materials have many peculiar and intriguing properties. In nature, CaP is found in nanostructured form embedded in a soft proteic matrix as the main mineral component of bones and teeth. The extraordinary stoichiometric flexibility, the different stabilities exhibited by its different forms as a function of pH and the highly dynamic nature of its surface ions, render CaP one of the most versatile materials for nanomedicine. This review summarizes some of the guidelines so far emerged for the synthesis of CaP composites in aqueous media that endow the material with tailored crystallinity, morphology, size, and functional properties. First, we introduce very briefly the areas of application of CaP within the nanomedicine field. Then through some selected examples, we review some synthetic routes where the presence of functional units (small templating molecules like surfactants, or oligomers and polymers) assists the synthesis and at the same time impart the functionality or the responsiveness desired for the end-application of the material. Finally, we illustrate two examples from our laboratory, where CaP is decorated by biologically active polymers or prepared within a thermo- and magneto-responsive hydrogel, respectively.
Collapse
Affiliation(s)
- Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Ilaria Meazzini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Benedetta Castroflorio
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Massimo Bonini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence 50019, Italy.
| |
Collapse
|
24
|
Maione S, Pérez-Madrigal MM, del Valle LJ, Díaz A, Franco L, Cativiela C, Puiggalí J, Alemán C. Biodegradable nanofibrous scaffolds as smart delivery vehicles for amino acids. J Appl Polym Sci 2017. [DOI: 10.1002/app.44883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Silvana Maione
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Maria M. Pérez-Madrigal
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Luis J. del Valle
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Angélica Díaz
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Lourdes Franco
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica; Instituto de Síntesis Química y Catálisis Homogénea, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza; C/Pedro Cerbuna, 12 Zaragoza 50009 Spain
| | - Jordi Puiggalí
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| | - Carlos Alemán
- Department of Chemical Engineering, Barcelona School of Industrial Engineering; Universitat Politècnica de Catalunya; Avenida Diagonal 647 Barcelona 08028 Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya; Campus Sud, Edifici C’, C/Pasqual i Vila s/n Barcelona 08028 Spain
| |
Collapse
|
25
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Wu H, Xu D, Yang M, Zhang X. Surface Structure of Hydroxyapatite from Simulated Annealing Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4643-4652. [PMID: 27096760 DOI: 10.1021/acs.langmuir.5b04667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface structure of hydroxyapatite (HAP) is crucial for its bioactivity. Using a molecular dynamics simulated annealing method, we studied the structure and its variation with annealing temperature of the HAP (100) surface. In contrast to the commonly used HAP surface model, which is sliced from HAP crystal and then relaxed at 0 K with first-principles or force-field calculations, a new surface structure with gradual changes from ordered inside to disordered on the surface was revealed. The disordering is dependent on the annealing temperature, Tmax. When Tmax increases up to the melting point, which was usually adopted in experiments, the disordering increases, as reflected by its radial distribution functions, structural factors, and atomic coordination numbers. The disordering of annealed structures does not show significant changes when Tmax is above the melting point. The thickness of disordered layers is about 10 Å. The surface energy of the annealed structures at high temperature is significantly less than that of the crystal structure relaxed at room temperature. A three-layer model of interior, middle, and surface was then proposed to describe the surface structure of HAP. The interior layer retains the atomic configurations in crystal. The middle layer has its atoms moved and its groups rotated about their original locations. In the surface layer, the atomic arrangements are totally different from those in crystal. In particular for the hydroxyl groups, they move outward and cover the Ca(2+) ions, leaving holes occupied by the phosphate groups. Our study suggested a new model with disordered surface structures for studying the interaction of HAP-based biomaterials with other molecules.
Collapse
Affiliation(s)
- Hong Wu
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University , Chengdu, Sichuan 610065, China
| | | | - Mingli Yang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University , Chengdu, Sichuan 610065, China
| | | |
Collapse
|
27
|
Bertran O, Revilla-López G, Casanovas J, del Valle LJ, Turon P, Puiggalí J, Alemán C. Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold. Chemistry 2016; 22:6631-6. [DOI: 10.1002/chem.201600703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Oscar Bertran
- Departament de Física Aplicada, EEI; Universitat Politècnica de Catalunya; Av. Pla de la Massa, 8 08700 Igualada Spain
| | - Guillermo Revilla-López
- Departament d'Enginyeria Química, ETSEIB; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
| | - Jordi Casanovas
- Departament de Química, EPS; Universitat de Lleida; c/Jaume II n° 69 25001 Lleida Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química, ETSEIB; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-Engineering; Universitat Politècnica de Catalunya, Campus Sud, Edifici C'; C. Pasqual i Vila s/n 08028 Barcelona Spain
| | - Pau Turon
- B. Braun Surgical; S.A. Carretera de Terrasa 121 08191 Rubí Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, ETSEIB; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-Engineering; Universitat Politècnica de Catalunya, Campus Sud, Edifici C'; C. Pasqual i Vila s/n 08028 Barcelona Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, ETSEIB; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-Engineering; Universitat Politècnica de Catalunya, Campus Sud, Edifici C'; C. Pasqual i Vila s/n 08028 Barcelona Spain
| |
Collapse
|
28
|
Revilla-López G, Bertran O, Casanovas J, Turon P, Puiggalí J, Alemán C. Effects of hydroxyapatite (0001) Ca2+/Mg2+ substitution on adsorbed d-ribose ring puckering. RSC Adv 2016. [DOI: 10.1039/c6ra10660a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advanced Molecular Dynamics (MD) simulation protocols have been used to assess the ring puckering of cyclic d-ribose when the sugar is adsorbed on the most stable (0001) facet of calcium hydroxyapatite (HAp).
Collapse
Affiliation(s)
- Guillem Revilla-López
- Institut für Organische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
- Departament d'Enginyeria Química
| | - Oscar Bertran
- Departament de Física Aplicada
- EEI
- Universitat Politècnica de Catalunya
- 08700 Igualada
- Spain
| | - Jordi Casanovas
- Departament de Química
- Escola Politècnica Superior
- Universitat de Lleida
- Lleida E-25001
- Spain
| | | | - Jordi Puiggalí
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| |
Collapse
|
29
|
Turon P, Puiggalí J, Bertrán O, Alemán C. Surviving Mass Extinctions through Biomineralized DNA. Chemistry 2015; 21:18892-8. [DOI: 10.1002/chem.201503030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Pau Turon
- Department of Research and Development, Regulatory Affairs and Quality Management, B. Braun Surgical, S.A. Ctra. de Terrassa, 121, 08191 Rubí, Barcelona (Spain)
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, E.T.S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona
- Center for Research in Nano‐Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona 08028 (Spain)
| | - Oscar Bertrán
- Departament de Física Aplicada, EEI, Universitat Politècnica de Catalunya, Av. Pla de la Massa, 8, 08700 Igualada (Spain)
| | - Carlos Alemán
- Departament d'Enginyeria Química, E.T.S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona
- Center for Research in Nano‐Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona 08028 (Spain)
| |
Collapse
|
30
|
Wang X, Sun Y, Lin K. Facile synthesis of dental enamel-like hydroxyapatite nanorod arrays via hydrothermal transformation of hillebrandite nanobelts. J Mater Chem B 2015; 3:7334-7339. [DOI: 10.1039/c5tb01506e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic dental enamel-like hydroxyapatite (HAp) nanorod arrays were facilely synthesized via hydrothermal treatment of the hillebrandite nanobelts as hard-templates in trisodium phosphate aqueous solution.
Collapse
Affiliation(s)
- Xiaohong Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Endodontics
- School of Stomatology
- Tongji University
- Shanghai 200072
| | - Yao Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- School of Stomatology
- Tongji University
- Shanghai 200072
- China
| | - Kaili Lin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- School of Stomatology
- Tongji University
- Shanghai 200072
- China
| |
Collapse
|
31
|
Rivas M, Casanovas J, del Valle LJ, Bertran O, Revilla-López G, Turon P, Puiggalí J, Alemán C. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles. Dalton Trans 2015; 44:9980-91. [DOI: 10.1039/c5dt00209e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adsorption of different phosphates and a triphosphonate onto hydroxyapatite has been highlighted combining experiments and theoretical calculations.
Collapse
Affiliation(s)
- Manuel Rivas
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Jordi Casanovas
- Departament de Química
- Escola Politècnica Superior
- Universitat de Lleida
- Lleida E-25001
- Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Oscar Bertran
- Departament de Física Aplicada
- EEI
- Universitat Politècnica de Catalunya
- 08700 Igualada
- Spain
| | - Guillermo Revilla-López
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Pau Turon
- B. Braun Surgical
- 08191 Rubí (Barcelona)
- Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| |
Collapse
|