1
|
Radfar R, Akin E, Sehit E, Moldovean-Cioroianu NS, Wolff N, Marquant R, Haupt K, Kienle L, Altintas Z. Synthesis and characterization of core-shell magnetic molecularly imprinted polymer nanocomposites for the detection of interleukin-6. Anal Bioanal Chem 2024; 416:6237-6257. [PMID: 39412695 PMCID: PMC11541377 DOI: 10.1007/s00216-024-05536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 11/07/2024]
Abstract
Interleukin-6 (IL-6) belongs to the cytokine family and plays a vital role in regulating immune response, bone maintenance, body temperature adjustment, and cell growth. The overexpression of IL-6 can indicate various health complications, such as anastomotic leakage, cancer, and chronic diseases. Therefore, the availability of highly sensitive and specific biosensing platforms for IL-6 detection is critical. In this study, for the first time, epitope-mediated IL-6-specific magnetic molecularly imprinted core-shell structures with fluorescent properties were synthesized using a three-step protocol, namely, magnetic nanoparticle functionalization, polymerization, and template removal following thorough optimization studies. The magnetic molecularly imprinted polymers (MMIPs) were characterized using dynamic and electrophoretic light scattering (DLS and ELS), revealing a hydrodynamic size of 169.9 nm and zeta potential of +17.1 mV, while Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy techniques showed characteristic peaks of the polymer and fluorescent tag, respectively. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the successful encapsulation of the magnetic core within the ca. 5-nm-thick polymeric shell. The MMIP-based electrochemical sensing platform achieved a limit of detection of 0.38 pM within a linear detection range of 0.38-380 pM, indicating high affinity (dissociation constant KD = 1.6 pM) for IL-6 protein in 50% diluted serum samples. Moreover, comparative investigations with the non-imprinted control polymer demonstrated an imprinting factor of 4, confirming high selectivity. With multifunctional features, including fluorescence, magnetic properties, and target responsiveness, the synthesized MMIPs hold significant potential for application in various sensor techniques as well as imaging.
Collapse
Affiliation(s)
- Rahil Radfar
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Eda Akin
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Ekin Sehit
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Nastasia Sanda Moldovean-Cioroianu
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Niklas Wolff
- Real Structure and Synthesis, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
| | - Rodrigue Marquant
- CNRS Enzyme and Cell Engineering Laboratory, Universite de Technologie de Compiègne, Compiègne, France
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory, Universite de Technologie de Compiègne, Compiègne, France
- Institut Universitaire de France, Compiegne, France
| | - Lorenz Kienle
- Real Structure and Synthesis, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Kiel, Germany
| | - Zeynep Altintas
- Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany.
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Kiel, Germany.
| |
Collapse
|
2
|
Singhal A, Singh A, Shrivastava A, Khan R. Epitope imprinted polymeric materials: application in electrochemical detection of disease biomarkers. J Mater Chem B 2023; 11:936-954. [PMID: 36606445 DOI: 10.1039/d2tb02135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epitope imprinting is a promising method for creating specialized recognition sites that resemble natural biorecognition elements. Epitope-imprinted materials have gained a lot of attention recently in a variety of fields, including bioanalysis, drug delivery, and clinical therapy. The vast applications of epitope imprinted polymers are due to the flexibility in choosing monomers, the simplicity in obtaining templates, specificity toward targets, and resistance to harsh environments along with being cost effective in nature. The "epitope imprinting technique," which uses only a tiny subunit of the target as the template during imprinting, offers a way around various drawbacks inherent to biomacromolecule systems i.e., traditional molecular imprinting techniques with regards to the large size of proteins, such as the size, complexity, accessibility, and conformational flexibility of the template. Electrochemical based sensors are proven to be promising tool for the quick, real-time monitoring of biomarkers. This review unravels epitope imprinting techniques, approaches, and strategies and highlights the applicability of these techniques for the electrochemical quantification of biomarkers for timely disease monitoring. In addition, some challenges are discussed along with future prospective developments.
Collapse
Affiliation(s)
- Ayushi Singhal
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amrita Singh
- Department of Biotechnology, Barkatullah University, Habibganj, Bhopal, Madhya Pradesh 462026, India
| | - Apoorva Shrivastava
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Dr D. Y. Patil Vidyapeeth, Sr. No. 87-88, Mumbai-Bangalore Highway, Tathawade, Pune, Maharashtra, 411033, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q. A review: Development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 2022; 1234:340319. [DOI: 10.1016/j.aca.2022.340319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
|
4
|
Khumsap T, Bamrungsap S, Thu VT, Nguyen LT. Development of epitope-imprinted polydopamine magnetic nanoparticles for selective recognition of allergenic egg ovalbumin. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022; 10:6571-6589. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.
Collapse
Affiliation(s)
- Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China.,Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
6
|
N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Epitope-imprinted polymers for biomacromolecules: Recent strategies, future challenges and selected applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Lee MH, Thomas JL, Li JA, Chen JR, Wang TL, Lin HY. Synthesis of Multifunctional Nanoparticles for the Combination of Photodynamic Therapy and Immunotherapy. Pharmaceuticals (Basel) 2021; 14:ph14060508. [PMID: 34073468 PMCID: PMC8228393 DOI: 10.3390/ph14060508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 protein (PD-L1) has been posited to have a major role in suppressing the immune system during pregnancy, tissue allografts, autoimmune disease and other diseases, such as hepatitis. Photodynamic therapy uses light and a photosensitizer to generate singlet oxygen, which causes cell death (phototoxicity). In this work, photosensitizers (such as merocyanine) were immobilized on the surface of magnetic nanoparticles. One peptide sequence from PD-L1 was used as the template and imprinted onto poly(ethylene-co-vinyl alcohol) to generate magnetic composite nanoparticles for the targeting of PD-L1 on tumor cells. These nanoparticles were characterized using dynamic light scattering, high-performance liquid chromatography, Brunauer-Emmett-Teller analysis and superconducting quantum interference magnetometry. Natural killer-92 cells were added to these composite nanoparticles, which were then incubated with human hepatoma (HepG2) cells and illuminated with visible light for various periods. The viability and apoptosis pathway of HepG2 were examined using a cell counting kit-8 and quantitative real-time polymerase chain reaction. Finally, treatment with composite nanoparticles and irradiation of light was performed using an animal xenograft model.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Correspondence: (M.-H.L.); (H.-Y.L.)
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Jin-An Li
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Jyun-Ren Chen
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
- Correspondence: (M.-H.L.); (H.-Y.L.)
| |
Collapse
|
9
|
Khumsap T, Corpuz A, Nguyen LT. Epitope-imprinted polymers: applications in protein recognition and separation. RSC Adv 2021; 11:11403-11414. [PMID: 35423617 PMCID: PMC8695941 DOI: 10.1039/d0ra10742e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) have evolved as promising platforms for specific recognition of proteins. However, molecular imprinting of the whole protein molecule is complicated by its large size, conformational instability, and structural complexity. These inherent limitations can be overcome by using epitope imprinting. Significant breakthroughs in the synthesis and application of epitope-imprinted polymers (EIPs) have been achieved and reported. This review highlights recent advances in epitope imprinting, from the selection of epitope peptide sequences and functional monomers to the methods applied in polymerization and template removal. Technological innovations in detection and extraction of proteins by EIPs are also provided.
Collapse
Affiliation(s)
- Tabkrich Khumsap
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| | - Angelica Corpuz
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| | - Loc Thai Nguyen
- Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology 58 Moo 9, Km. 42, Paholyothin Highway Klong Luang Pathumthani 12120 Thailand
| |
Collapse
|
10
|
Application of Molecular Imprinting Technology in Post-translational Modified Protein Enrichment. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Pirzada M, Sehit E, Altintas Z. Cancer biomarker detection in human serum samples using nanoparticle decorated epitope-mediated hybrid MIP. Biosens Bioelectron 2020; 166:112464. [PMID: 32771854 DOI: 10.1016/j.bios.2020.112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023]
Abstract
The determination of disease-associated molecules at trace amounts is a key factor for early and efficient diagnosis from human body fluids. Herein, an ultrasensitive electrochemical sensor based on hybrid epitope imprinting and nanomaterial amplification was developed. The hybrid epitope imprinting was achieved by electropolymerization in the presence of two computationally selected and cysteine modified epitopes of neuron specific enolase (NSE), as-synthesized gold nanoparticles (AuNPs), and functional monomer. The AuNPs decorated epitope-mediated hybrid MIPs, as well as the standard hybrid MIPs, were utilized for the preparation of electrochemical sensors to demonstrate the impact of nanomaterial's modification in the polymer network for biomarker sensing. The fabrication process of both sensor types was investigated by employing cyclic voltammetry, square wave voltammetry, atomic force microscopy, and scanning electron microscopy. The biomarker assay using the standard hybrid MIPs resulted in 2.5-fold higher sensitivity compared to single epitope imprints, whereas the AuNP-hybrid MIPs enhanced the sensitivity level to a great extent and allowed the recognition of NSE in human serum in a concentration range of 25-4000 pg/mL. Comparative selectivity studies with non-imprinted polymer resulted in an imprinting factor of 4.2, confirming the high target selectivity of AuNP-MIP cavities. Cross-reaction of the sensor with four reference molecules (dopamine, bovine serum albumin, glucose and elongated peptide) was negligible. As compared to current strategies for epitope imprinting which rely on single epitopes for the formation of molecular cavities, the hybrid epitope-MIPs, particularly with the inclusion of AuNPs have provided more desirable sensing platforms with high sensitivity, affinity and specificity.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Straße des 17. Juni 124, Berlin, 10623, Germany
| | - Ekin Sehit
- Technical University of Berlin, Straße des 17. Juni 124, Berlin, 10623, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, Berlin, 10623, Germany.
| |
Collapse
|
12
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
13
|
Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Turan E. His‐Tag‐Epitope Imprinted Thermoresponsive Magnetic Nanoparticles for Recognition and Separation Thyroid Peroxidase Antigens from Whole Blood Samples. ChemistrySelect 2018. [DOI: 10.1002/slct.201801557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eylem Turan
- Department of ChemistryGazi UniversityFaculty of ScienceDepartment of Chemistry 06500, Besevler, Ankara Turkey
| |
Collapse
|
15
|
Qin YP, Jia C, He XW, Li WY, Zhang YK. Thermosensitive Metal Chelation Dual-Template Epitope Imprinting Polymer Using Distillation-Precipitation Polymerization for Simultaneous Recognition of Human Serum Albumin and Transferrin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9060-9068. [PMID: 29461037 DOI: 10.1021/acsami.8b00327] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new type of thermosensitive dual-template epitope molecular imprinting polymer was prepared and coated on magnetic carbon nanotubes (MCNTs@D-EMIP) for simultaneous recognition of human serum albumin (HSA) and transferrin (Trf) via the strategies of dual-template epitope imprinting, metal chelation imprinting, and distillation-precipitation polymerization (DPP). C-terminal peptides of HSA and C-terminal peptides of Trf were selected as templates, zinc acrylate and N-isopropylacrylamide were used as functional monomers, and MCNTs@D-EMIP was prepared by the method of DPP. The two types of template epitopes were immobilized by metal chelation and six-membered ring formed with zinc acylate. MCNTs@D-EMIP was prepared in only 30 min, which was much shorter than other polymerization methods. The resultant MCNTs@D-EMIP showed excellent specific recognition ability toward HSA and Trf. The adsorption amounts of MCNTs@D-EMIP for HSA and Trf were 103.67 and 68.48 mg g-1 and the imprinting factors were 2.57 and 2.17, respectively. In addition, MCNTs@D-EMIP displayed a thermosensitive property to realize temperature-controlled recognition and release of target proteins. Furthermore, the results of high-performance liquid chromatography analysis proved that MCNTs@D-EMIP could be applied to specifically recognize two types of targets simultaneously in the biosample. The proposed strategy provided a preparation method for the thermosensitive dual-template epitope imprinting polymer via dual-template imprinting, metal chelation imprinting, and DPP.
Collapse
Affiliation(s)
- Ya-Ping Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
16
|
Boitard C, Bée A, Ménager C, Griffete N. Magnetic protein imprinted polymers: a review. J Mater Chem B 2018; 6:1563-1580. [PMID: 32254273 DOI: 10.1039/c7tb02985c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein imprinted polymers have received a lot of interest in the past few years because of their applications as tailor-made receptors for biomacromolecules. Generally, the preparation of these polymers requires numerous and time-consuming steps. But their coupling with magnetic nanoparticles simplifies and speeds up the synthesis of these materials. Some recent papers describe the use of protein imprinted polymer (PIP) coupled to magnetic iron oxide nanoparticles (MION) for the design of MION@PIP biosensors. With such systems, a target protein can be specifically and selectively captured from complex media due to exceptional chemical properties of the polymer. Despite such performances, only a limited number of studies address these hybrid nanosystems. This review focuses on the chemistry and preparation of MION@PIP nanocomposites as well as on the metrics used to characterize their performances.
Collapse
Affiliation(s)
- Charlotte Boitard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX Laboratory, Case 51, 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
17
|
Li S, Li D, Sun L, Yao Y, Yao C. A designable aminophenylboronic acid functionalized magnetic Fe 3O 4/ZIF-8/APBA for specific recognition of glycoproteins and glycopeptides. RSC Adv 2018; 8:6887-6892. [PMID: 35540317 PMCID: PMC9078308 DOI: 10.1039/c7ra12054k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
We fabricated a novel aminophenylboronic acid functionalized magnetic Fe3O4/zeolitic imidazolate framework-8/APBA (denoted as Fe3O4/ZIF-8/APBA). First, Fe3O4 was coated by zeolitic imidazolate framework-8 (denoted as Fe3O4/ZIF-8) using the hydrothermal method. Next, the phenylboronic acid functionalized triethoxysilane reagent was synthesized by 3-aminophenylboronic acid and 3-isocyanatopropyltriethoxysilane, which was modified on the surface of the Fe3O4/ZIF-8 nanocomposite through the sol-gel technique and electrostatic interaction as well as π-π stacking interaction. The synthetic Fe3O4/ZIF-8/APBA exhibited high adsorption capacity and good specificity toward glycoproteins. Moreover, the Fe3O4/ZIF-8/APBA possessed high saturation magnetization (51.41 emu g-1) and achieved better separation in the presence of an external magnetic field. Above all, the as-designed Fe3O4/ZIF-8/APBA was successfully used to capture glycoproteins and identify the horseradish peroxidase (HRP) tryptic digest. This study provides a facile strategy to embellish the aminophenylboronic acid onto the nanocomposite substrate and develop a new material for the specific recognition and enrichment of glycoproteins and low-abundance glycopeptides in proteomics research.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Dongyan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Long Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yuewei Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
18
|
Lee MH, Thomas JL, Liao CL, Jurcevic S, Crnogorac-Jurcevic T, Lin HY. Epitope recognition of peptide-imprinted polymers for Regenerating protein 1 (REG1). Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Lee MH, Thomas JL, Liao CL, Jurcevic S, Crnogorac-Jurcevic T, Lin HY. Polymers imprinted with three REG1B peptides for electrochemical determination of Regenerating Protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2169-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Transferring the Selectivity of a Natural Antibody into a Molecularly Imprinted Polymer. Methods Mol Biol 2017. [PMID: 28255890 DOI: 10.1007/978-1-4939-6857-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Natural antibodies are widely used for their unprecedented reproducibility and the remarkable selectivity for a wide range of analytes. However, biodegradability and the need to work in biocompatible environments limit their applications. Molecularly imprinted polymers are a robust alternative. While molecularly imprinted polymers have shown remarkable selectivities for small molecules, large structures as proteins, viruses or entire cells are still problematic and flexible structures are virtually impossible to imprint. We have developed a method to form a polymeric copy of the antibodies instead. This book chapter aims to summarize the progress with this technique. To make it easier for other scientists to use this methods I critically discuss advantages and drawbacks of the method compared to alternative techniques. The discussion should help to identify for which applications this technique would be valuable. Finally, I provide a practical guide to use this new method. I highlight potential problems and give hints for possible improvements or adaptations for different applications.
Collapse
|
21
|
Neves MI, Wechsler ME, Gomes ME, Reis RL, Granja PL, Peppas NA. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:27-43. [DOI: 10.1089/ten.teb.2016.0202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mariana I. Neves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| | - Marissa E. Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas
| | | | - Rui L. Reis
- 3B's Research Group, Universidade do Minho, Guimarães, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
22
|
Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 2016; 86:270-276. [DOI: 10.1016/j.bios.2016.06.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
23
|
Qin YP, Li DY, He XW, Li WY, Zhang YK. Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10155-10163. [PMID: 27049646 DOI: 10.1021/acsami.6b00794] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel epitope molecularly imprinted polymer on the surface of magnetic carbon nanotubes (MCNTs@EMIP) was successfully fabricated to specifically recognize target protein cytochrome c (Cyt C) with high performance. The peptides sequences corresponding to the surface-exposed C-terminus domains of Cyt C was selected as epitope template molecule, and commercially available zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were employed as functional monomer and cross-linker, respectively, to synthesize MIP via free radical polymerization. The epitope was immobilized via metal chelation and six-membered ring formed between the functional monomer and the hydroxyl and amino groups of the epitope. The resulting MCNTs@EMIP exhibited specific recognition ability toward target Cyt C including more satisfactory imprinting factor (about 11.7) than that of other reported imprinting methods. In addition, the MCNTs@EMIP demonstrated a high adsorption amount (about 780.0 mg g(-1)) and excellent selectivity. Besides, the magnetic property of the support material made the processes easy and highly efficient by assistance of an external magnetic field. High-performance liquid chromatography analysis of Cyt C in bovine blood real sample and protein mixture indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@EMIP had potential to be applied in bioseparation area. In brief, this study provided a new protocol to detect target protein in complex sample via epitope imprinting approach and surface imprinting strategy.
Collapse
Affiliation(s)
- Ya-Ping Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Dong-Yan Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
24
|
Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 2016; 80:433-441. [PMID: 26874111 DOI: 10.1016/j.bios.2016.01.092] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications.
Collapse
|
25
|
Ertürk G, Mattiasson B. From imprinting to microcontact imprinting-A new tool to increase selectivity in analytical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:30-44. [PMID: 26739371 DOI: 10.1016/j.jchromb.2015.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Molecular imprinting technology has been successfully applied to small molecular templates but a slow progress has been made in macromolecular imprinting owing to the challenges in natural properties of macromolecules, especially proteins. In this review, the macromolecular imprinting approaches are discussed with examples from recent publications. A new molecular imprinting strategy, microcontact imprinting is highlighted with its recent applications.
Collapse
Affiliation(s)
- Gizem Ertürk
- Hacettepe University, Department of Biology, Ankara, Turkey
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden; CapSenze HB, Medicon Village, Lund, Sweden.
| |
Collapse
|
26
|
Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol Adv 2015; 34:30-46. [PMID: 26656748 DOI: 10.1016/j.biotechadv.2015.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The present review article focuses on gathering, summarizing, and critically evaluating the results of the last decade on separating and sensing macromolecular compounds and microorganisms with the use of molecularly imprinted polymer (MIP) synthetic receptors. Macromolecules play an important role in biology and are termed that way to contrast them from micromolecules. The former are large and complex molecules with relatively high molecular weights. The article mainly considers chemical sensing of deoxyribonucleic acids (DNAs), proteins and protein fragments as well as sugars and oligosaccharides. Moreover, it briefly discusses fabrication of chemosensors for determination of bacteria and viruses that can ultimately be considered as extremely large macromolecules.
Collapse
|
27
|
Wang Y, Chai Z, Sun Y, Gao M, Fu G. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:644-56. [DOI: 10.1080/09205063.2015.1053215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Du C, Hu X, Guan P, Guo L, Qian L, Song R, Li J, Wang C. Water-compatible surface-imprinted microspheres for high adsorption and selective recognition of peptide drug from aqueous media. J Mater Chem B 2015; 3:3044-3053. [DOI: 10.1039/c4tb02030h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through employing a synergetic effect of directional and non-directional interactions, surface-imprinted microspheres can selectively recognize thymopentin in aqueous media.
Collapse
Affiliation(s)
- Chunbao Du
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaoling Hu
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ping Guan
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Longxia Guo
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Liwei Qian
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Renyuan Song
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ji Li
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Chaoli Wang
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|